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Original CV32A6 Optimized version Evolution

FPGA
resources

Look-up tables 18,103 8,077 −55%

Flip-flops 11,484 4,403 −61%

DSP blocks 4 4 -
Block RAM 36 12 −67%

Performance
Max. freq. 100 MHz 140 MHz +40%

CoreMark/MHz 2.8 2.8 -
CoreMark 280 392 +40%

on Xilinx Kintex 7 (XC7K325T-2)

Challenge: Optimize CV32A6 for FPGA targets to offer a 
competitive and technology-agnostic soft core for FPGA. 
• Alternative to FPGA proprietary soft processor cores 

(Microblaze, Nios-II…)
• Same core, same source code for FPGA and ASIC 

developments.
• Boosting multi-sourcing and the reuse of HW/SW 

architectures, with reduced risks, costs and delays.

How it works:
• Better mapping to FPGA resources.
• Making features optional.
• Selecting relevant parameters for FPGA typical use cases.
• Optimizing the microarchitecture.

Results:
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Challenge: Extend CVA6 with coprocessors to accelerate applications
• CV-X-IF coprocessor interface specified by the OpenHW Group to 

promote the interoperability of CPU cores and coprocessors.
• Domain-specification acceleration with custom extensions.
• Support of RISC-V extensions not featured by the core (e.g. SIMD).
• No change to the RTL source code of the RISC-V core.

How it works:
• When the core decodes an instruction that it cannot execute, the 

instruction is offloaded to the coprocessor.
• Compressed instructions are supported.
• The coprocessor can also submit memory requests.*

Results: 
• CV-X-IF available in CVA6.
• Already demonstrated with several coprocessors.
• CV-X-IF implementation can handle speculative execution.*

* Not yet supported in CVA6

Challenge: Extend the SW ecosystem with Yocto support
• Popular generator of Linux distributions for 

embedded systems.
• Access to a wide catalog of applications and 

frameworks.
• Handles the whole embedded complexity with a 

packaged SDK and easy deployment.

How it works:
Meta-cva6-yocto contains recipe modifications of:
• U-Boot with SDCard and TFTP support.
• OpenSBI.
• Busybox.
• Linux 5.10.7 kernel.

Optimizations for FPGA targets

Results:
• Recently released Yocto

support allows contributors and 
users to quickly run a Linux 
distribution on CV32A6 and 
CV64A6.

• Eclipse IDE-based Linux
and bare metal debug
also available.

These CVA6 results will be further expanded in upcoming projects:
• More performance optimizations of the core
• More acceleration with new CV-X-IF coprocessors
• Richer and improved documentation
• Industrial-grade verification
• Safe & secure features
• Software ecosystem
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Major Thales recent contributions to CVA6:
Add the CV-X-IF coprocessor interface to 
extend the supported instruction set.
Optimize CV32A6 (performance, resources) for 
FPGA targets in a technology-agnostic fashion.
Add Yocto Linux support.

CORE-V CVA6:
• Open-source RISC-V application core.
• Two flavors: CV32A6 (32-bit) and CV64A6 (64-bit).
• Written in SystemVerilog.
• Highly Configurable: optional features and 

extensions, customizable L1 cache.
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