
Sébastien Jacq, Jean-Roch Coulon, Kevin Eyssartier, Jérôme Quévremont

Frequency & Area Optimizations for FPGA Targets

These activities are supported by the FRACTAL and TRISTAN projects, which
have received funding from the Key Digital Technologies Joint Undertaking (KDT
JU) under grant agreements 877056 and 101095947. The JU receives support
from the European Union’s Horizon Europe research and innovation program. The
present action reflects only the authors’ view; the European Commission and the
JU are not responsible for any use that may be made of the information it contains.

� https://github.com/openhwgroup/cva6/
https://github.com/openhwgroup/meta-cva6-yocto

✉

Original CV32A6 Optimized version Evolution

FPGA
resources

Look-up tables 18,103 8,077 −55%

Flip-flops 11,484 4,403 −61%

DSP blocks 4 4 -
Block RAM 36 12 −67%

Performance
Max. freq. 100 MHz 140 MHz +40%

CoreMark/MHz 2.8 2.8 -
CoreMark 280 392 +40%

on Xilinx Kintex 7 (XC7K325T-2)

Challenge: Optimize CV32A6 for FPGA targets to offer a
competitive and technology-agnostic soft core for FPGA.
• Alternative to FPGA proprietary soft processor cores

(Microblaze, Nios-II…)
• Same core, same source code for FPGA and ASIC

developments.
• Boosting multi-sourcing and the reuse of HW/SW

architectures, with reduced risks, costs and delays.

How it works:
• Better mapping to FPGA resources.
• Making features optional.
• Selecting relevant parameters for FPGA typical use cases.
• Optimizing the microarchitecture.

Results:

Perspectives

Domain-Specific Acceleration

Embedded Linux Support

Optional C
extension

BTB to
BRAM

BHT to
LUTRAM

Queue to
LUTRAM D$ 32b

adaptation

Smaller cache

Hierarchical TLB

Regfile to
LUTRAM

Scoreboard
parameters

Optional perf.
counters

FPGA
specific

optimizations

Techno-
agnostic

optimizations

Smaller cache

Hierarchical TLB

Challenge: Extend CVA6 with coprocessors to accelerate applications
• CV-X-IF coprocessor interface specified by the OpenHW Group to

promote the interoperability of CPU cores and coprocessors.
• Domain-specification acceleration with custom extensions.
• Support of RISC-V extensions not featured by the core (e.g. SIMD).
• No change to the RTL source code of the RISC-V core.

How it works:
• When the core decodes an instruction that it cannot execute, the

instruction is offloaded to the coprocessor.
• Compressed instructions are supported.
• The coprocessor can also submit memory requests.*

Results:
• CV-X-IF available in CVA6.
• Already demonstrated with several coprocessors.
• CV-X-IF implementation can handle speculative execution.*

* Not yet supported in CVA6

Challenge: Extend the SW ecosystem with Yocto support
• Popular generator of Linux distributions for

embedded systems.
• Access to a wide catalog of applications and

frameworks.
• Handles the whole embedded complexity with a

packaged SDK and easy deployment.

How it works:
Meta-cva6-yocto contains recipe modifications of:
• U-Boot with SDCard and TFTP support.
• OpenSBI.
• Busybox.
• Linux 5.10.7 kernel.

Optimizations for FPGA targets

Results:
• Recently released Yocto

support allows contributors and
users to quickly run a Linux
distribution on CV32A6 and
CV64A6.

• Eclipse IDE-based Linux
and bare metal debug
also available.

These CVA6 results will be further expanded in upcoming projects:
• More performance optimizations of the core
• More acceleration with new CV-X-IF coprocessors
• Richer and improved documentation
• Industrial-grade verification
• Safe & secure features
• Software ecosystem

CVA6

PC

GEN
FETCH ID ISSUE EX COMMIT

Coprocessor

©
 T

h
a
le

s
 2

0
2
3

Major Thales recent contributions to CVA6:
Add the CV-X-IF coprocessor interface to
extend the supported instruction set.
Optimize CV32A6 (performance, resources) for
FPGA targets in a technology-agnostic fashion.
Add Yocto Linux support.

CORE-V CVA6:
• Open-source RISC-V application core.
• Two flavors: CV32A6 (32-bit) and CV64A6 (64-bit).
• Written in SystemVerilog.
• Highly Configurable: optional features and

extensions, customizable L1 cache.

Acknowledgements

The authors acknowledge the European projects which support
CVA6, the OpenHW staff and the OpenHW members who are
contributing to CVA6: hypervisor mode, high performance cache
interface, vector processor interface, bit-manipulation (Zb*)
extension, verification…

= CV-X-IF

