
Extended Abstract: A Flexible Simulation
Environment for RISC-V

Karsten Emrich1, Conrad Foik1, Johannes Kappes2, Sebastian Prebeck2,
Daniel Mueller-Gritschneder1, Wolfgang Ecker2, Ulf Schlichtmann1

1Technical University of Munich, Germany 2Infineon Technologies
daniel.mueller@tum.de, wolfgang.ecker@infineon.com

Abstract

In this paper, we present a flexible simulation environment, well-suited for rapid prototyping of RISC-V embedded
software. The environment supports both purely functional and performance simulations. It is based on an
open-source instruction set simulator (ISS), called ETISS, which features a plugin mechanism to easily extend its
functionality. This allows, for instance, to retrieve and modify the simulator state, enabling an early evaluation
of the chosen processor architecture. Our approach utilizes this extensibility to automatically generate behavioral
models for ETISS, based on abstract instruction set architecture (ISA) descriptions. This enables a quick
adaptation of ETISS to an ISA variant, and eases the integration of our approach into existing design flows, e.g.,
to generate and validate custom RISC-V cores. We also outline how to extend ETISS to work as a performance
estimator, using abstract descriptions of the targeted microarchitectures.

Introduction
One of the key advantages of the RISC-V instruction
set architecture (ISA) is its high level of flexibility.
Through standardized instruction sets and the ability
to define custom instructions, the ISA is designed to
be adaptable. In addition, due to its open-source
character, vendors are free to implement their own
microarchitectures. To fully utilize the opportunities
offered by RISC-V’s flexibility, designers typically rely
on rapid prototyping of the processor, to enable early
software development and design space exploration.

A common approach for early prototyping is the
use of instruction set simulators (ISSs). ISSs simulate
the functional behavior of a processor at ISA-level,
and thus offer high simulation speeds, as required for
efficient prototyping. Popular examples of ISSs for the
RISC-V architecture are QEMU [1] and Spike [2].

Besides ISSs, performance simulators are frequently
used during early prototyping, if the performance of
the embedded software on the target processor needs
to be analyzed. Examples of such simulators are
TQSIM [3] and RISCV-VP [4], which extend the ISS
concept by adding non-functional timing models of
the targeted microarchitecture.

While there exist both ISSs and performance simula-
tors for RISC-V, they usually target a specific variant
and are not easily adaptable. As such, they do not
support the flexibility offered by RISC-V.

In this paper, we present a flexible simulation envi-
ronment well suited for rapid prototyping of RISC-V
and validation of customized RISC-V hardware imple-
mentations, supporting both purely functional as well
as performance simulations. Our approach is based

This work was supported in part by the German Federal Min-
istry of Education and Research (BMBF) within the project
Scale4Edge under contract nos. 16ME0127 and 16ME0132-40.

on an ISS, called ETISS [5]. In the following, we will
first present how to automatically generate behavioral
models for ETISS from an abstract ISA description,
thus enabling quick adaptation of the ISS to new ISA
variants for functional simulations. Then we outline
how to extend ETISS to work as a performance sim-
ulator. Similar to the first step, we use an abstract
description of the microarchitecture to quickly adapt
to different core variants.

Functional Simulation
Extending an ISS usually requires intricate knowledge
of its internal interfaces and program structure. In
ETISS, however, all major components apart from
the main simulation loop are provided by plugins, to
simplify the extension of the simulator. The most
interesting plugin type for our use case is the CPUArch
plugin, which specifies the entire behavioral model for
a specific target architecture in ETISS.

While writing a plugin is easier than extending a
monolithic codebase, it still requires knowledge of
simulator-specific code layout and interfaces. With our
tool M2-ISA-R, we designed a generalized metamodel
to represent functional and structural components of
a given architecture, as well as tools to parse an easy-
to-use, consumer-agnostic description language and
a generator for ETISS CPUArch plugins. M2-ISA-R
is implemented fully in Python 3 and is split into
frontends to consume models, the metamodel classes
itself, and backends to generate models.

As the main description language we chose
CoreDSL 2 [6] for its C-like instruction behavior model-
ing and ease of parsing and extensibility. The authors
of CoreDSL 2 also provide ready-to-use descriptions
of all basic RISC-V instruction sets.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1



CoreDSL2
ETISS ArchParser ISA-R

Model Writer

Metamodel
M2-ISA-R

CoreDSL2

Model

Transform

RTLGenerator

Verify

Figure 1: M2-ISA-R tool flow

ETISS Performance
EstimatorMonitorBinary Trace

CoreDSL2 Performance DSL

Figure 2: Performance simulation setup for ETISS

M2-ISA-R includes a frontend to parse CoreDSL 2
based on the ANTLR4 parser generator framework.
The M2-ISA-R architecture description metamodel
consists of a set of Python classes, roughly divided
into architectural and behavioral descriptions of a
target architecture. Finalizing the M2-ISA-R tool flow
are backends to produce a model description. The
most important backend is the ETISS architecture
plugin writer, which closes the gap from CoreDSL 2
to a usable simulator.

Existing design tools can also be extended to directly
output CoreDSL 2 descriptions. This approach facili-
tates broader possibilities of code reuse. Having a com-
mon source model is desirable for HW-SW-Codesign,
because the functional model generated this way is
then always coherent with a corresponding hardware
design, enabling cross-verification applications.

A schematic representation of the entire flow is
shown in Figure 1. The flow allows specifying ISA
models in a consumer-agnostic way to facilitate reuse
across tools while also abstracting away all simulator-
specific details.

The focus of current research on M2-ISA-R and the
CoreDSL 2 language is to generate also non-instruction
behavior like trap entry, virtual memory management
and semihosting directly from CoreDSL 2 descriptions.

Performance Estimation
Our approach extends ETISS to work as a performance
simulator by using its plugin mechanism mentioned
above. An instruction monitor is added to ETISS to
generate a trace of the executed instructions. The trace
is then passed to an estimator, which calculates the
performance based on the trace and a non-functional
timing model of the considered microarchitecture. Fig-
ure 2 illustrates this approach, omitting the generator
flow presented above for readability.

To flexibly describe the timing model of the per-
formance estimator, the CorePerfDSL language is in-

Table 1: Results from performance simulation
Architecture Data Branch Est. target Simulation

Forwarding prediction perf. (CPI) speed (MIPS)

Harvard

No 1.59 15.07
No Static 1.52 13.97

Dynamic 1.48 12.27
No 1.23 15.09

Yes Static 1.15 13.92
Dynamic 1.11 12.72

von Neumann

No 1.68 6.67
No Static 1.60 6.44

Dynamic 1.57 6.13
No 1.36 6.75

Yes Static 1.30 6.42
Dynamic 1.27 6.08

troduced [7]. CorePerfDSL offers an isolated, non-
functional description of a microarchitecture’s timing
behavior, including essential aspects, such as struc-
tural, data and control hazards. In addition, the de-
scription is highly flexible, allowing for the fast defini-
tion of multiple processor variants. CorePerfDSL also
allows the specification of the required trace, which is
used to specify the setup of the instruction monitor.

Table 1 shows the results for several performance
simulations using the presented setup. To illustrate the
flexibility of the approach 12 microarchitectural vari-
ants of an artificial, but characteristic, single-issue
five-stage RISC-V processor have been considered.
The performance estimates are given in cycles-per-
instruction (CPI) and seem well-founded for the cor-
responding variants. The simulation speeds of 6-15
million instructions per second (MIPS) are reasonable
for this kind of simulation.

References

[1] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic
Translator”. In: USENIX Annual Technical Conference.
2005, p. 41.

[2] Spike RISC-V ISA Simulator. https : / / github . com /
riscv- software- src/riscv- isa- sim. Accessed: 2022-
05-13.

[3] Shin-haeng Kang, Donghoon Yoo, and Soonhoi Ha.
“TQSIM: A fast cycle-approximate processor simulator
based on QEMU”. In: Journal of Systems Architecture
66-67 (2016), pp. 33–47.

[4] Vladimir Herdt, Daniel Große, and Rolf Drechsler. “Fast
and Accurate Performance Evaluation for RISC-V using
Virtual Prototypes”. In: Design, Automation Test in Eu-
rope Conference and Exhibition (DATE). 2020, pp. 618–
621.

[5] Daniel Mueller-Gritschneder et al. “The Extendable Trans-
lating Instruction Set Simulator (ETISS) Interlinked with
an MDA Framework for Fast RISC Prototyping”. In: Inter-
national Symposium on Rapid System Prototyping (RSP).
2017, pp. 79–84.

[6] MINRES Technologies. CoreDSL 2.0. https : / / www .
minres.com/work/coredsl/. Accessed: 2023-03-15. 2022.

[7] Conrad Foik, Daniel Mueller-Gritschneder, and Ulf
Schlichtmann. “CorePerfDSL: A Flexible Processor De-
scription Language for Software Performance Simulation”.
In: Forum on Specification & Design Languages (FDL).
2022, pp. 1–8.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://www.minres.com/work/coredsl/
https://www.minres.com/work/coredsl/

	Introduction
	Functional Simulation
	Performance Estimation

