
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Ventus: an RVV-based General Purpose GPU

Design and Implementation
Kexiang Yang1,2, Hualin Wu3, Jingzhou Li1,2, Chufeng Jin1,2, Yujie Shi1,2, Xudong Liu1,2, Zexia Yang1,2,

Fangfei Yu1,2, Mingyuan Ma1,2, Sipeng Hu4, Tianwei Gong4, Hu He1,2∗

1Tsinghua University
2International Innovation Center of Tsinghua University, Shanghai

3Terapines Ltd
4Beijing Information Science and Technology University

Abstract

Graphics Processing Units (GPUs) have become the most popular platform for accelerating modern applications such as

Machine Learning, Signal Processing, and Graph workloads. Modern GPUs use Single Instruction, Multiple Thread (SIMT)

structures to schedule several Single Instruction, Multiple Data (SIMD) pipelines, thus maximizing Data Level Parallelism.

In this work, we propose Ventus, a General Purpose GPU (GPGPU) implementation based on the RISC-V Vector

Extension (RVV). Lanes in the warps of Ventus are organized as a vector-thread architecture. We add self-defined

instructions, such as branch, register index extension and Tensor Core related instructions to fulfill the functional

requirements of a GPGPU. We accomplish a complete OpenCL to RVV compiler and driver that fit our hardware design.

Ventus is successfully deployed on an FPGA-based platform and scales up to 16 SMs with a total of 256 warps. This work

is developed in Chisel HDL and is now open-sourced on Github.

Introduction

GPGPU is a field of computing that utilizes the

processing power of GPUs for parallelism and high-

throughput computing. GPGPU has become increasingly

popular in recent years, especially in fields such as machine

learning, scientific computing, and computer vision. Open-

source GPGPU helps researchers dive into the inner

implementation of the hardware and benefit from software-

hardware co-design. There are several open-source GPGPU

implementations, MIAOW, Nyuzi and Vortex [1].

RVV is a set of optional instructions defining a series of

vector element operations and vector registers, supporting

different vector widths and lengths at different situation.

We propose our open-source GPGPU, Ventus. In this

work, we extend the meaning of RVV to serve as the ISA

for GPGPU. Taking into account the programming model

and practical requirements, we supplement ISA with our

custom extensions. We use Chisel HDL to design an RTL,

develop a driver based on PoCL, and create a compiler

from OpenCL to RVV based on LLVM. Finally, we

evaluate our work on FPGA.

Motivation

Both CUDA and OpenCL provide similar programming

models for GPGPU with SIMT architecture, where threads

are organized into groups, called thread blocks, or

Correlative Thread Array (CTA). Programmers describe

the behavior of individual threads and organize them into

thread blocks at an expected size, which are then scheduled

on the hardware. In NVIDIA's GPU, such hardware units

are call Streaming Multiprocessors (SMs) which work as

multithreaded SIMD processors. Threads at the same thread

block are grouped into warps and scheduled for execution

on SMs, switching between warps to hide fetch and

execution latency [2].

Vector processors extend the capability of multi-data

processing with SIMD lanes, which is similar to SMs in

GPUs. RVV and GPGPU also share similarities in terms of

compilers. Compilers only focus on the behavior of a single

vector element, and process the corresponding data based

on the index of the vector element itself. The hardware then

packs and schedules the operations on the warps.

Considering the typical data usage requirements of

GPGPU and the high configurability that RVV exhibits for

vectors of different lengths and element widths, we have

chosen the Zve32f version of RVV as our implementation.

Combined with RV32IMA_zfinx, RVV programs are

executed in the form of a hardware vector-thread

architecture. Our hardware can be considered as an RVV

processor with elen=32 and vlen=32, and allows multiple

RVV programs to be executed in a time-sharing manner,

thus supporting SIMT programming model.

Using only the instructions in RVV is not sufficient to

cover GPU functionality. Firstly, we add branch control

and thread synchronization instructions to control the

behavior of threads as [1] does. Secondly, considering that

RVV limits the number of registers, we import register

index extension instructions, extending the number of

architectural registers to 256, which is compatible with

current RISC-V programs. Thirdly, we provide immediate-

offset memory access instructions to extend RVV’s

addressing modes. Finally, we add support for tensor

convolutions and exponent function required by

Transformer.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

Ventus GPGPU design

Hardware design

Our hardware architecture is shown in Figure 1. As for

task allocation, the driver sends tasks to the CTA-scheduler

in thread block units, which are then divided into warps and

sent to the SM for execution. As for storage, L1Cache and

shared memory are private to the SM, and all SMs are

connected to a common L2Cache with an NoC.

Figure 1: Ventus GPGPU Architecture

Regarding the internal design of the SM, it's described as

a SIMD processing pipeline that supports multithreaded

scheduling. The front-end includes instruction fetching,

decoding, I-buffer, banked vector and scalar register files,

scoreboard, and warp scheduler. The back-end includes

scalar data-path and vector data-path. Since we use vector

instructions to distinguish vector operations, functions such

as common data and address calculations, as well as overall

branch jumps, can be completed using scalar instructions.

To distinguish thread blocks and thread IDs, we allocate

private CSRs for each warp. By utilizing vid.v instruction

in RVV, combined with the warp ID information provided

by CSR, we can obtain the thread ID of each thread.

Software stack

Ventus is designed to support full profile of OpenCL 2.0.

Users write OpenCL kernels which are executed on each

SIMT with a portion of workload explicitly set via OpenCL

API such as clEnqueueNDRangeKernel. The OpenCL

kernel is written in a way that is agnostic to the total

workload size, as users can dynamically set the total work

size, work dimension, and group size at runtime via the

OpenCL API. The OpenCL kernel is explicitly compiled

and built by the OpenCL API, using functions such as

clCompileProgram, clLinkProgram, or clBuildProgram.

We store the compiled and linked kernel and data in the

Executable and Linkable Format (ELF), using a customized

linker script to map sections such as .text, .rodata, .data,

and .bss into the 4G physical addressing space. As there are

scalar ALUs and vector ALUs in each SM, the compiler

generates scalar and vector instructions based on analyzing

whether the execution path in the kernel is diverged, non-

diverged code path will be translated into RV32IMA_zfinx

instructions which will be executed on scalar ALU, while

diverged code path will be translated into RVV instructions

which will be executed on vALU, vFPU etc.

 In addition to the ELF loadable sections mentioned above,

we have designed different stacks for scalar path and vector

path. Local memory is mapped to SRAM for fast data

sharing within SM, while the result of scalar ALU is share

by the entire SM, we allocate stack for scalar ALU on local

memory as well, the RISC-V SP register is used to store the

stack base pointer and stack grows upwards. For each

SIMT thread, stack spaces are allocated in the private

memory of each thread, RISC-V TP register stores the base

address of the stack, Ventus hardware will add per-thread

offset to TP register translation private memory into

physical memory addressing space.

We developed OpenCL driver based on PoCL, which

bridges the OpenCL program with the hardware. We also

ported open-source ISA simulator spike as Ventus GPGPU

ISS. The OpenCL compiler and libraries for Ventus were

developed based on LLVM compiler infrastructure.

Evaluation

We use Chisel HDL to develop hardware codes. A 16SM-

16warp-16lane version with Tensor Core occupies 65% of

the area of 4 VU19P FPGAs. Due to the inter-chip

communication latency being limited to 10MHz on FPGAs,

the theoretical peak performance is 5GFlops FP32 on

normal lanes and 5GFlops FP32 on Tensor Core. After

adding FPGA driver and AXI bus support, the design has

been deployed on a Xilinx VCU128 board with 2SM-

4warp-8lane, achieving a clock frequency of 100MHz and

a peak performance of 3.2GFlops with 11% of the area.

OpenCL benchmarks are currently being tested and are

expected to be completed soon.

Conclusion

Our proposed Ventus based on RVV includes custom

instructions and implements a processor with multithreaded

scheduling capabilities, as well as multi-level task

allocation and memory access components, fulfilling the

requirement of a GPGPU. We have also developed an

OpenCL driver and compiler. All hardware designs are

developed using Chisel HDL, and we test our designs on

FPGA.

All software and hardware codes are open-sourced at

https://github.com/THU-DSP-LAB/ventus-gpgpu.

References

[1] Blaise Tine, et al. Vortex: Extending the RISC-V ISA for GPGPU

and 3D-Graphics. In MICRO-54, 2021.
[2] Tor M. Aamodt, et al. General-purpose Graphics Processor

Architectures. Morgan & Claypool Publishers, 2018.

https://github.com/THU-DSP-LAB/ventus-gpgpu

