
Ventus: an RVV-based General Purpose GPU 

Design and Implementation

Kexiang Yang1,2, Hualin Wu3, Jingzhou Li1,2, Chufeng Jin1,2, Yujie Shi1,2, Xudong Liu1,2,

Zexia Yang1,2, Fangfei Yu1,2, Mingyuan Ma1,2, Sipeng Hu4, Tianwei Gong4, Hu He1,2∗

ISA: RV32IMA_ZFinx_Zicsr_V
• Vector instructions for per-thread 

operation, elen=32 bit, vlen=32*elen

• Scalar instructions for common data

• Custom instructions:
• VBranch/Join to control thread divergence

• EndProgram and Barrier to control warps

• RegisterExtension to extend register index

• Registers: 64 sGPRs, 256 vGPRs

• Memory space definition and access 

methods 

• Custom CSRs and metadata to launch 

workgroup and implement workitem

functions

What is Ventus?
• Open-sourced RVV-based GPGPU

• An implementation of Chisel HDL, driver and compiler

• OpenCL compatibility

• RISC-V compatibility with 256 registers available

AMD NVIDIA Intel Vortex Ventus

ISA RDNA PTX GEM RISC-V IMF RV32V

Instruction 
Length

32/64 bit 128 bit (SASS) 128 bit 32 bit 32 bit

Memory 
Model

GDS, LDS

Constants

Global

Shared, 
Texture

Constants

Global

Software 
Managed

Shared

Global

Private

Shared

Global

Threading 
Model

workgroup

wavefront

32/64 thread

CTA

warp

32 thread

Root Thread

Child Thread

compute unit

wavefront

workgroup

warp

32 thread

Register file
256 vGPRs

106 sGPRs
Scalar 128 GRFs 32 sGPRs

256 vGPRs

64 sGPRs

Thread 
Control

endpgm

message

branch

thread mask

branch

predicate

message

branch

SPF Regs

split/join

thread mask

(split/join)

endprg

branch

thread mask

(vbranch/join)

Synchronizati
on

barrier

wait_cnt

barrier

membar

wait

fence

barrier

flush

barrier

fence

Execution Unit

ALU

memory

Matrix Core

ALU

memory

Tensor Core

ALU

memory

Matrix Engine

ALU

memory

ALU

memory

Tensor Core

Software Stack
• Ventus-LLVM: compiler based on LLVM for Ventus ISA and library

• PoCL: OpenCL platform implementation

• Ventus-driver: KMD implementation

• Ventus-gpgpu-isa-simulator: ISS based on Spike

1Tsinghua University, 2International Innovation Center of Tsinghua University, Shanghai, 3Terapines Ltd, 4Beijing Information Science and Technology University

Microarchitecture
• Multi-level task allocation is implemented by driver and CTA-scheduler

• SM works as an RVV processor supporting warp scheduling

• 4-bank register files can be allocated according to usage

• Tensor Core supports custom tensor operations

Evaluation & Conclusion
• A complete implementation of GPGPU based on RVV

• Chisel HDL, configurable in num of warps, threads, SMs, lanes…

• A 16SM-16warp-16lane version with Tensor Core occupies 65% of the 

area of 4 VU19P FPGAs

• Open-sourced at https://github.com/THU-DSP-LAB/ventus-gpgpu

https://github.com/THU-DSP-LAB/ventus-gpgpu

