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ISA: RV32IMA_ZFinx_Zicsr_V
• Vector instructions for per-thread 

operation, elen=32 bit, vlen=32*elen

• Scalar instructions for common data

• Custom instructions:
• VBranch/Join to control thread divergence

• EndProgram and Barrier to control warps

• RegisterExtension to extend register index

• Registers: 64 sGPRs, 256 vGPRs

• Memory space definition and access 

methods 

• Custom CSRs and metadata to launch 

workgroup and implement workitem

functions

What is Ventus?
• Open-sourced RVV-based GPGPU

• An implementation of Chisel HDL, driver and compiler

• OpenCL compatibility

• RISC-V compatibility with 256 registers available
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Software Stack
• Ventus-LLVM: compiler based on LLVM for Ventus ISA and library

• PoCL: OpenCL platform implementation

• Ventus-driver: KMD implementation

• Ventus-gpgpu-isa-simulator: ISS based on Spike
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Microarchitecture
• Multi-level task allocation is implemented by driver and CTA-scheduler

• SM works as an RVV processor supporting warp scheduling

• 4-bank register files can be allocated according to usage

• Tensor Core supports custom tensor operations

Evaluation & Conclusion
• A complete implementation of GPGPU based on RVV

• Chisel HDL, configurable in num of warps, threads, SMs, lanes…

• A 16SM-16warp-16lane version with Tensor Core occupies 65% of the 

area of 4 VU19P FPGAs

• Open-sourced at https://github.com/THU-DSP-LAB/ventus-gpgpu

https://github.com/THU-DSP-LAB/ventus-gpgpu

