
Changing the RISC-V Verification Paradigm
with Vyoma’s Verification-as-a-Service Framework

Lavanya Jagadeeswaran1,2∗

1Vyoma Systems Private Limited
2 SHAKTI Group, RISE Lab, Department of Computer Science and Engineering, Indian Institute of Technology, Madras

Abstract

Design Verification has traditionally been a closed development, high-cost resource (in terms of time, manpower)
usage endeavor. In order to keep up with the growing trend of the increasing complexity of designs and its open
standard methodologies, Vyoma’s Verification-as-a-Service technology targets improved verification productivity
leveraging state-of-the-art verification frameworks (Python-based) and compute infrastructure (Cloud-based).
This provides a practical shift-left methodology for next-generation verification needs without compromising on
the design verification quality.

Introduction

In recent times, the RISC-V open standard ISA has
been adopted in the industry and academia alike to
build highly efficient commercial processors. The ISA,
being modular and extensible, has seen customization
based on target applications. To leverage the benefits
of the open standard RISC-V ISA, SHAKTI processor
program started in 2014 at RISE Group, IIT Madras
developed different class of processors targeting em-
bedded, controller and high performance applications.
The Shakti design offerings also include interconnect
fabrics, peripheral IPs and customizable System-on-
Chips (SoC).

Verification of these varied design components can
be categorized at three different levels, namely, block,
core and system level verification. Block level ver-
ification targets different units of the processor or
peripheral whereas core level verifies the processor im-
plementation based on the RISC-V ISA. The system
level verification targets the interconnections of var-
ious core and IPs along with re-using the block and
core level verification components in order to make it a
comprehensive top level verification methodology. The
verification levels for an example Shakti C-Class [1]
RISC-V processor based SoC is depicted in Figure 1
and they are described in the subsequent sections.

Block Level Verification

Block level verification follows UVM methodology as
shown in Figure 2. The test transactions are provided
to the driver component which translates it to signals
to be driven to the design-under-test. The input moni-
tor observes the signal changes happening at the DUT
input which is then provided to the reference model
to obtain the expected output. Similarly, the output

∗Corresponding author: lavanya@vyomasystems.com

Figure 1: Verification Levels for a Shakti C-Class based
SoC

monitor observes output signal changes. Finally, both
the expected and observed output are compared in
the scoreboard. The test fails when the comparison
fails during simulation. This UVM based verification
framework is developed in Python. The interaction
of the Python framework with the simulated DUT
is provided through the CoCoTB libraries [2]. The
simulation is done using Verilator.

Figure 2: UVM Block Level Verification

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:lavanya@vyomasystems.com


Processor Verification

To verify these RISC-V implementations, several sup-
port tools have also been developed by the RISC-V
community. These tools aid in verifying the processor
in the form of providing test execution environments,
configurable test benches or coverage metrics describ-
ing the verification completeness. Enumerating these
open-source support tools, riscv-tests [3] provides self-
checking directed assembly tests and execution envi-
ronments, riscv-arch-tests [4] provide a framework to
run signature based compliance tests to validate the
implementation against the user and privileged speci-
fications [5]. AAPG [6], riscv-torture [7], riscv-dv [8],
microTESK [9] are used to perform random genera-
tion of assembly tests targeting various architectural
scenarios. Spike [10], riscvOVPsim [11], VeeR-ISS [12]
are the reference models used for simulation-based ver-
ification. In addition to these tools, there are various
formal definitions of the ISA specification along with
coverage capability that can greatly aid verification.
At present, none of the above tools or environments
can be termed as complete in itself to verify all the
possible customizable RISC-V implementation. Vy-
oma’s UpTickPro Verification framework provides a
cloud-based Python infrastructure to rapidly provide
verification closure and deliver high-quality RISC-V
Designs.

Vyoma’s UpTickPro

Figure 3: Vyoma’s UpTickPro

RISC-V processor design verification will be carried
out as shown above at two abstract levels, namely,
block and core. The block level verification targets
different design units of the processor using industry-
standard UVM (Universal Verification Methodology)
framework in Python using CoCoTb [2]. On the other
hand, core level verification provides instruction-level
comparison of the RISC-V design with Spike, the
RISC-V ISS (Instruction Set Simulator). UpTickPro
provides ready-to-verify RISC-V tests both manually
developed and randomly generated. These tools are
developed and maintained at Vyoma for rapid proces-

sor verification and their artifacts like the test binaries,
processor state comparison on the fly, ISA level cover-
age data can be quickly provided for the verification
flow. Using Vyoma’s RISC-V Artifacts, verification
happens in UpTickPro’s environment to parallelly sim-
ulate the tests on the design and compare it with
the expected ISS trace. Vyoma’s UpTickPro intro-
duces a new paradigm where we leverage the software
infrastructure for hardware verification and thereby
improving productivity but maintaining RISC-V de-
sign quality.

Acknowledgements

The author would like to thank the SHAKTI Group
at IIT Madras for the collaboration and access to the
industry-standard SHAKTI ecosystem to validate the
use of UpTickPro for Verification. Vyoma Systems is
a startup out of this SHAKTI Lab incubated at IITM
Pravartak Technologies Foundation at IIT Madras,
Chennai, India.

Author Bio

Lavanya has 12+ years of experience in the verification
field at industry and academic processor teams. She
has been part of IBM (IBM Z processors), ARM (ARM
Cortex M processors) processor verification teams and
led the RISC-V processor verification efforts at Ram-
bus Chip Technologies and at SHAKTI IIT Madras.
She has an MS at IIT Madras from the Department
of Computer Science and Engineering in 2011.

References

[1] SHAKTI C-Class. https://gitlab.com/shaktiproject/
cores/c-class.

[2] CoCoTb. https://www.cocotb.org/.

[3] riscv-tests. https://github.com/riscv/riscv-tests.

[4] riscv-arch-tests. https://github.com/riscv-non-isa/
riscv-arch-test.

[5] riscv-spec. https : / / riscof . readthedocs . io / en /
latest/.

[6] AAPG. https://gitlab.com/shaktiproject/tools/
aapg.

[7] riscv-torture. https://github.com/ucb- bar/riscv-
torture.

[8] riscv-dv. https://github.com/chipsalliance/riscv-
dv.

[9] microTESK. http://www.microtesk.org/.

[10] spike. https://github.com/riscv-software-src/riscv-
isa-sim.

[11] riscvOVPsim. https : / / github . com / riscv / riscv -
ovpsim.

[12] VeeR-ISS. https://github.com/chipsalliance/VeeR-
ISS.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://gitlab.com/shaktiproject/cores/c-class
https://gitlab.com/shaktiproject/cores/c-class
https://www.cocotb.org/
https://github.com/riscv/riscv-tests
https://github.com/riscv-non-isa/riscv-arch-test
https://github.com/riscv-non-isa/riscv-arch-test
https://riscof.readthedocs.io/en/latest/
https://riscof.readthedocs.io/en/latest/
https://gitlab.com/shaktiproject/tools/aapg
https://gitlab.com/shaktiproject/tools/aapg
https://github.com/ucb-bar/riscv-torture
https://github.com/ucb-bar/riscv-torture
https://github.com/chipsalliance/riscv-dv
https://github.com/chipsalliance/riscv-dv
http://www.microtesk.org/
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv/riscv-ovpsim
https://github.com/riscv/riscv-ovpsim
https://github.com/chipsalliance/VeeR-ISS
https://github.com/chipsalliance/VeeR-ISS

	Introduction
	Block Level Verification
	Processor Verification
	Vyoma's UpTickPro
	Acknowledgements
	Author Bio


