
Open-source RISC-V Input/Output Memory
Management Unit (IOMMU) IP

Manuel Rodríguez∗, Francisco Costa, Bruno Sá and Sandro Pinto

Centro ALGORITMI/LASI, Universidade do Minho, Portugal

Abstract
This work describes the design and implementation of an open-source IOMMU IP compliant with the ratified
version of the RISC-V IOMMU specification (v1.0-rc1). So far, we have designed and implemented a basic
IP encompassing only the mandatory features (of the spec) and support for virtualization. which has been
successfully validated and evaluated on a single-core CVA6-based SoC. Moving forward, we plan to extend the IP
with more advanced features, i.e., optional features such as a hardware performance monitor, memory-resident
interrupt files support, etc. We will open-source our IP to the RISC-V community.

Introduction

The introduction of Direct Memory Access (DMA)
transactions at the platform level has raised security
concerns, as malicious peripherals with DMA capa-
bilities could potentially undermine overall System-
on-Chips (SoC) and their applications. To address
this issue, the IOMMU hardware module started to
be integrated into modern computers to mediate and
manage device accesses to memory, performing per-
mission checks and address translation on every DMA
request. Recently, RISC-V froze its IOMMU spec-
ification, and the aim of this work is to implement
an open-source IOMMU IP that meets this standard.
We have implemented a basic IP that includes all
mandatory features outlined in the specification and
virtualization support. This version was validated in
a single-core CVA6-based SoC [1]. We intend to make
this basic IOMMU IP open-source under permissive
licenses shortly, and furthermore, enhance it by adding
advanced features.

RISC-V IOMMU in a Nutshell

The RISC-V IOMMU specification [2] defines a set of
mandatory and optional features. Table 1 summarizes
all the features considered for our implementation and
categorizes them as basic or advanced.
Use Cases for Virtualization. The RISC-V
IOMMU defines three methods for managing DMA-
capable devices in virtualized systems. The first
method, known as device pass-through, permits di-
rect control of a device by a guest OS with minimal
hypervisor intervention. Alternatively, a guest OS can

∗Corresponding author: pg47436@alunos.uminho.pt.
This work has been supported by Technology Innovation Insti-
tute (TII) and FCT – Fundação para a Ciência e Tecnologia
within the R&D Units Project Scope UIDB/00319/2020 and
Scholarships Project Scope SFRH/BD/07707/2021.

RISC-V IOMMU Feature Classification
Memory-based device context (DC) and
process context (PC). ★ ➊

Address translation caches. ➊

Two-stage address translation. ➊

Command Queue and Fault/Event
Queue. ★ ➊

Message-Signaled Interrupt (MSI) ad-
dress translation. ➊

Memory-Resident Interrupt Files (MRIF)
support. ➋

Hardware Performance Monitor (HPM). ➋

MSI or Wired-Signaled Interrupt (WSI)
generation. ★ ➊

Memory-mapped register interface. ★ ➊

Debug register interface. ➋

Table 1: RISC-V IOMMU Features:
(★) Mandatory; (➊) Included in both basic and advanced

versions of the IOMMU IP; (➋) Included in advanced
version only.

share its process address space with devices, which
allows guest applications to program the device using
IO Virtual Addresses (IOVA). Lastly, a host OS or
hypervisor may choose to retain direct control of a
device.
Interaction with AIA. The IOMMU may option-
ally redirect MSIs from guest-controlled devices to
the corresponding guest interrupt file in an IMSIC
or to a MRIF. For this purpose, the IOMMU uses
the MSI address translation data structures provided
by the hypervisor and defined by the RISC-V AIA
specification.

IOMMU IP: Features, Design and
Status

The IOMMU IP’s basic version includes all the es-
sential features mandated by the RISC-V IOMMU
specification, along with additional features needed to

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:pg47436@alunos.uminho.pt

Figure 1: IOMMU Internal Design:
() Basic and Advanced; () Advanced only.

provide virtualization support at the platform level.
Figure 1 depicts the internal design of the IOMMU.
IOMMU Basic IP. In the basic version of the
IOMMU IP, the hardware Page-Table Walker (PTW)
module translates IOVAs using memory page tables.
It supports Bare and Sv39/Sv39x4 address translation
schemes and MSI address translation. The Context
Directory Walker (CDW) module locates the DC and
PC in memory and supports up to three-level context
directory tables. Additionally, three fully-associative
TLBs were included to accelerate address translations.
We have also developed a handler module for each
memory-based queue. The command queue handler
processes commands stored in the queue by software,
whereas the fault queue handler writes a new entry
whenever a fault or event occurs and generates an
interrupt to request software service.
IOMMU Advanced IP. The advanced version of
the IOMMU IP will integrate MRIF support into the
PTW. An HPM will enable counting performance-
related events and, finally, a debug register interface
will be implemented, empowering software to request
explicit address translations.
IOMMU IP Status. At present, we have finished
the basic version of the IOMMU IP. We have also
integrated the IP in a CVA6-based SoC with support
for virtualization [3] and validated its operation using
a DMA device. We are currently in the process of
implementing required components in the software
stack to enable the use of the IOMMU IP by the Bao
hypervisor[4].

Preliminary Evaluation

Functional Validation. To test the basic version of
the IOMMU IP, we created a baremetal test frame-
work application, which utilize a basic DMA device
integrated into the SoC. This application was initially
executed in the verilated model of the SoC. Subse-
quently, we synthesized the RTL code and ran the
tests physically on an FPGA platform.

Configuration Resource Utilization

No IOMMU LUT 76667/203800
FF 53017/407600

WSI support only LUT 94187 (+9.65%)
FF 62979 (+2.86%)

WSI and MSI LUT 95417 (+10.29%)
FF 63143 (+2.90%)

WSI, MSI and PC LUT 95816 (+10.41%)
FF 63464 (+2.98%)

Table 2: Hardware resources used by a single-core
CVA6-based SoC implemented in a Genesys2 FPGA board

with different IOMMU configurations.

Hardware Results. Table 2 illustrates the resource
utilization for different IOMMU configurations, indi-
cating the percentage increase relative to the total
resources available on the FPGA. Our analysis re-
vealed that most IOMMU resources are consumed by
the Address Translation Caches, as these were im-
plemented using flip-flops. In our future work, we
will consider alternative technologies for implementing
these caches (e.g., BRAM), which would reduce the
number of used flip-flops at the cost of some additional
cycles of latency.

Roadmap

Regarding the following steps, we plan to add support
for the RISC-V IOMMU in the open-source Bao hyper-
visor. Moving forward, we will extend the IOMMU IP
with advanced features as aforementioned. Finally, we
will analyze and evaluate the implemented IP, focusing
on Mixed-Criticality Systems (MCS) for automotive.

Conclusion

This project is currently in preliminary stages, and
efforts have been primarily focused on designing and
implementing a basic and functional IOMMU IP com-
pliant with the RISC-V IOMMU specification. We
intend to release the basic version open-sourced to
promote collaboration within the RISC-V community
for the implementation of advanced features.

References

[1] Florian Zaruba and Luca Benini. “The Cost of Application-
Class Processing: Energy and Performance Analysis of
a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm
FDSOI Technology”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 27.11 (2019), pp. 2629–
2640.

[2] IOMMU Task Group. RISC-V IOMMU Specification Doc-
ument. RISC-V. 2023. url: https://github.com/riscv-
non-isa/riscv-iommu/blob/main/riscv-iommu.pdf.

[3] Bruno Sá et al. CVA6 RISC-V Virtualization: Architecture,
Microarchitecture, and Design Space Exploration. 2023.
url: https://arxiv.org/abs/2302.02969.

[4] José Martins et al. “Bao: A Lightweight Static Partitioning
Hypervisor for Modern Multi-Core Embedded Systems”.
In: Workshop on NG-RES. 2020.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://github.com/riscv-non-isa/riscv-iommu/blob/main/riscv-iommu.pdf
https://github.com/riscv-non-isa/riscv-iommu/blob/main/riscv-iommu.pdf
https://arxiv.org/abs/2302.02969

	Introduction
	RISC-V IOMMU in a Nutshell
	IOMMU IP: Features, Design and Status
	Preliminary Evaluation
	Roadmap
	Conclusion

