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Abstract

Funded by the UK ExCALIBUR H&ES exascale programme, in early 2022 a RISC-V testbed for HPC was
stood up to provide free access for scientific software developers to experiment with RISC-V for their workloads.
Here we report on successes, challenges, and lessons learnt from this activity with a view to better understanding
the suitability of RISC-V for HPC and important areas to focus RISC-V HPC community efforts upon.

Introduction

The ExCALIBUR H&ES RISC-V testbed has been
operational for 12 months and our overarching aim has
been to provide a service that HPC software develop-
ers will feel familiar with. This means providing access
via a login node and the module environment enabling
distinct versions of tooling such as compilers and li-
braries. RISC-V compute nodes are available via the
Slurm scheduler using a shared filesystem throughout.
At the time of writing, the testbed contains a diver-
sity of nodes comprising six types of physical RISC-V
CPUs and additionally soft-core RISC-V CPUs which
are deployed via FPGAs to enable users to experiment
run codes on cutting edge designs.

Such a diversity of hardware and users makes this
an interesting study in the current state of play of
RISC-V for HPC workloads, and the purpose of this
extended abstract is to summarise these insights and
provide recommendations around how the ecosystem
can be improved to help adoption. Interested readers
can access the testbed at https://riscv.epcc.ed.ac.uk.

Testbed Experiences

Deceptively simple initial steps

The RISC-V ecosystem is, certainly at first glance,
impressive. It is no mean feat that supported, pretty
much out of the box, is the ability to network differ-
ent RISC-V boards and for these to run Linux which
provides common tools such as NFS and Slurm. Fur-
thermore, there are many libraries prebuilt for RISC-V,
and this availability of common HPC libraries such as
PETSC, FFTW, HDF5, and NETCDF is noteworthy.

The Message Passing Interface (MPI) is a ubiquitous
standard for inter-node communication used in HPC
providing, amongst other things, point to point and
collective communications. The two main MPI imple-
mentations MPICH and OpenMPI are both available
for RISC-V and consequently executing MPI codes
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across RISC-V compute nodes is no different to other
technologies. Furthermore, binaries often run seam-
lessly across the distinct RISC-V CPUs in the testbed.

Challenges

Whilst the building blocks are all present in the RISC-
V ecosystem for HPC, when delving deeper into setting
up a service there have also been several challenges [1].
These fall into three major areas; software tooling,
OS kernels, and hardware availability. Concerning
software tooling, whilst there is an impressive set of
libraries and compilers supporting RISC-V [2], support
is lacking for common profiling tools, which are critical
for HPC developers. Access to hardware performance
counters is non-standard across the CPUs and whilst
Perf is supported by some of the boards, often this
requires rebuilding the stock kernel to enable and is
not available on all RISC-V CPUs. It is our opinion
that this should be a priority area of focus for HPC.

However, by far the largest challenge we found is
in the vectorisation support provided by compilers.
The main-line GCC compiler does not support RISC-
V vectorisation because, whilst there was a v0.7.1
vectorisation branch, this was dropped. Indeed T-
Head, the chip division of Alibaba, have provided
their own version of GCC to explicitly support the
v0.7.1 standard vectorisation of their RISC-V core,
the XuanTie C906, which is used by the Allwinner
D1 SoC. This in itself is a challenge because in recent
months the download of this bespoke compiler GCC
version has become inaccessible.

By comparison, Clang supports RISC-V vectorisa-
tion at v1.0 only. However, there is a lack of hardware
that currently supports v1.0, and far more implement-
ing v0.7.1 for example built around the C906. This is
challenging for HPC, where vectorisation is required
for performance, and made worse by the lack of back-
wards compatibility between v1.0 and v0.7.1. This
situation forced us to develop a tool which will mod-
ify the assembly code generated by Clang for v1.0
vectorisation and backport it to v0.7.1 [3], enabling
our users to compile via Clang and leverage vectori-
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sation on testbed hardware. Furthermore, there are
several ubiquitous HPC libraries that a large number
of code rely upon, and whilst non-vectorised scalar
versions of these are available for RISC-V, it is key
that the community can optimise these by leveraging
vectorisation.

The Linux kernel that ships with the hardware can
be overly restrictive and an example of this is with the
DongshanNezhaSTU board, built around the Allwin-
ner D1 SoC. It is not possible to compile new modules
into the kernel on the device, for instance to support
network file systems, due to the proprietary, protected,
format of the bootloader. This means that the kernels
need to be built externally (cross-compiled) whenever
a new kernel is required and the bootloader must also
be rebuilt at the same time. To allow kernel modules
that enable the boards to be added to a cluster, such
as network file system and device drivers, a new boot-
loader (enabling vectorisation at the hardware level)
and new kernel based on Debian (exposing vectorisa-
tion to applications) must be built. To build a new
Linux image, vendor specific patches must be applied
to buildroot and, in the case of the D1 use the T-Head
specific GCC compiler version.

The third challenge we have faced is in the availabil-
ity of hardware, especially those interesting for high
performance workloads. Whilst there are numerous
medium to long term efforts, it has been a challenge
to source suitable machines for our testbed. This is
one of the reasons why our testbed comprises a diverse
mix of RISC-V boards, from the embedded Lichee RV
Dock to the HiFive Unmatched and StarFive Vision-
Five V1 and V2. Furthermore this scarcity forced us
to go down the route of providing soft-cores in the
testbed, enabling us to provide cutting-edge features
for users to experiment with, albeit at significantly
reduced clock speed. Retrospectively, this was a useful
choice as it enables experimentation with aspects likely
present in future physical hardware.

Benchmarking comparison

Users have been able to run a variety of applications
and benchmarks on the RISC-V testbed, including
atmospheric models such as MONC [4] and WRF, and
quantum chemistry codes such as CP2K. These, in
addition to extensive benchmarking, have resulted in
numerous insights into the relative performance of
hardware, many of which were surprising. Figure 1
illustrates the performance of two benchmarks from
Polybench [5], compiled with Clang 16, Heat-3D which
is a stencil-based code calculating the Heat equation
over a 3D data domain and ATAX which is under-
taking matrix transposition and vector multiplication.
In this experiment we are executing over all the CPU

cores; four in the case of the StarFive VisionFive V2
and HiFive Unmatched, two with the StarFive Vision-
Five V1 and one core for the Allwinner D1. There are
two results for the Allwinner D1 with vectorisation,
one using T-Head’s GCC compiler and the second com-
bining Clang with our v0.7.1 backport tool. It can be
seen that vectorisation is beneficial on the Allwinner
D1 when compiled with Clang as it produces the most
efficient executable compared to GCC. Given that the
Allwinner D1 costs around $30, which is much less
than the other boards, it is noteworthy that one vec-
torised core outperforms all other CPUs, comprising
two or four cores, for the Heat-2D benchmark.

Figure 1: Performance comparison of two Polybench
kernels between testbed hardware

Conclusions & recommendations

Users of our RISC-V HPC testbed have been impressed
that it just feels like any other HPC machine, and
whilst there are challenges standing up these tech-
nologies for HPC users, the key building blocks are
present. We believe that RISC-V has a critical role
to play in HPC, and as time progresses we will see
RISC-V become ubiquitous in both specialist high per-
formance CPUs and also accelerators. As a priority,
the RISC-V HPC community should look to enhance
support for vectorisation in libraries and compilers, as
well as increasing the range of development tools, such
as profilers that are available.
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