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Abstract

We present TestRIG, a test framework for RISC-V implementations. To use TestRIG, a Direct Instruction Injection interface is added to the
implementation under test. Direct Instruction Injection allows the test framework to inject instructions directly into the processor's pipeline
(instead of instructions being fetched from program memory). The Direct Instruction Injection approach simplifies randomized testing,
particularly when the test programs contain branch instructions.

We describe some of the main challenges in randomized testing of CPUs, and explain how TestRIG overcomes them. Finally, we give examples of
some hardware bugs that were found using TestRIG, including bugs in the floating point library supplied with the BlueSpec compiler and bugs
that were detected during development of the CHERI security extension.

Introduction
TestRIG (Testing with Random Instruction Generation) is a
testing framework for RISC-V implementations. The RISC-V
community has standardized a formal model of the1

architecture in the Sail language [1], giving a human-readable
specification that can also be used for simulation and
verification. Ideally, a RISC-V implementor could formally
prove equivalence between their implementation and the Sail
model, but proof tools are not yet sufficiently automated to be
routinely used on the whole-processor level. As a pragmatic
compromise, we use TestRIG to check equivalence between
the model and an implementation by generating random
instruction sequences, executing the same sequences on the
model and the implementation under test, and comparing
execution traces (tandem execution). This approach does not
prove equivalence but can demonstrate divergence, and is
usable in all stages of development.

TestRIG uses the RISC-V Formal Interface (RVFI) standard2

to observe the change in state after each instruction of the
implementation under test, and uses a novel technique that we
are calling Direct Instruction Injection (DII) for test injection.
In normal program execution, the next instruction is fetched
from program memory at an address determined by the
program counter. With Direct Instruction Injection, the next
instruction to be executed is provided by the test harness,
regardless of the CPU’s program counter.

We are not testing completed, fabricated chips. Rather, we are
comparing executable formal models, software ISA simulators
and simulated execution of hardware designs. This requires us
to instrument the CPU design with an additional interface for

2 https://github.com/SymbioticEDA/riscv-formal
1 https://github.com/riscv/sail-riscv

Direct Instruction Injection used by the test harness during
tandem verification.

We have added the Direct Instruction Injection interface to the
Sail RISC-V formal model, and to two high-performance
emulators: Spike , and QEMU . We have also instrumented3 4

four RISC-V processor implementations with RVFI-DII,
spanning from embedded to superscalar. We have used
TestRIG to test many standard RISC-V extensions, and the
experimental CHERI security extension.

We found TestRIG to be easier to use than unit tests, since
instructions can be tested as they are implemented without
supporting a full testing framework. We also found that
TestRIG gave more thorough test coverage due to random
generation replacing developer effort to explore possibilities. It
is effective at detecting not just issues in instruction semantics,
but also in the pipeline and the data caches. As a result,
TestRIG has completely replaced our instruction-set level unit
testing for development.

TestRIG framework

TestRIG is designed as a modular ecosystem: an interactive
Verification Engine (VEngine) stimulates RISC-V
implementations over RVFI-DII sockets. An RVFI-DII
compatible RISC-V implementation can reset, consume
instruction sequences, and report execution traces via its
RVFI-DII interface.

A VEngine can drive one or more RVFI-DII compatible
implementations; a VEngine might have an internal RISC-V
model, or could drive two independent implementations and

4 https://www.qemu.org
3 https://github.com/riscv-software-src/riscv-isa-sim
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compare their RVFI traces, as we have done with QCVEngine.
VEngine instruction sequences could be loaded from disk,
generated randomly, or produced with interactive
architecture-driven state-space exploration.

The RVFI-DII bytestream interface allows models and
implementations written in various languages to communicate
through widely supported networking sockets. QCVEngine is
written in Haskell, and the Sail RISC-V model is written in
Sail (offering OCaml and C backends). Spike and QEMU are
RISC-V simulators written in C and C++. Hardware
implementations that support RVFI-DII, including RVBS ,5

Ibex , Piccolo , Flute , and RiscyOO are written in either6 7 8 9

SystemVerilog or Bluespec, although this is not required for
TestRIG.

RVFI-DII

To participate in the TestRIG verification ecosystem,
implementations must be extended with RVFI-DII
instrumentation. The RISC-V Formal Interface (RVFI),
specified by Claire Wolf, is an existing trace format for formal
verification using symbolic instructions. RVFI exposes select
architecturally significant signals such as the instruction
encoding and any memory address or value, as well as the
indices and values of the operand and writeback registers.

TestRIG extends RVFI with Direct Instruction Injection (DII).
DII is for instruction input, RVFI is for trace output, and
RVFI-DII supports full interactive verification. DII directly
specifies the instruction sequence expected in the output trace,
and does not associate instructions with memory addresses.
This requires custom pipeline instrumentation, but enables
greatly simplified sequence generation and shrinking, as the
program counter does not affect the instruction stream.
Existing RISC-V cores that implement RVFI can be
augmented to participate in the TestRIG ecosystem by
implementing DII, and conversely RVFI-DII designs may
benefit from RVFI formal verification tooling.

QuickCheck VEngine

Our TestRIG Verification Engine, QCVEngine, leverages
Haskell’s QuickCheck library [2]. Due to the simplicity of DII
execution, which decouples the instruction stream from control
flow, QCVEngine can use unmodified QuickCheck utilities to
generate, compare, and shrink instruction sequences.

9 https://github.com/csail-csg/riscy-OOO
8 https://github.com/bluespec/Flute
7 https://github.com/bluespec/Piccolo
6 https://github.com/lowRISC/ibex
5 https://github.com/CTSRD-CHERI/RVBS

QuickCheck receives a function with a pass/fail return value,
and generates inputs in search of a failure. To facilitate this, we
construct a function that receives a list of instructions, sends
these over two DII sockets, collects RVFI traces back from
these sockets, asserts they match, and returns the result.

We then provide a set of generators of arbitrary instruction
sequences that are used by QuickCheck to produce inputs to
this function. We use convenience functions to define
instructions in a syntax closely resembling the RISC-V ISA
manual, and provide tailored generators for each instruction
field to promote register reuse. QuickCheck automatically uses
these generators to construct arbitrary instruction sequences.
We also provide targeted generators for simple subsets of the
instruction set, as well as generators that leverage templates of
varying complexity to reach deeper states, including virtual
memory mappings and cache conflicts.

We also develop a mechanism to allow semantic shrinking of
counterexample traces, beyond QuickCheck’s default of
deleting instructions.

Evaluation

We have measured functional coverage of TestRIG over the
Sail model compared to the RISC-V test suite and10

RISCV-DV , finding the coverage broadly comparable.11

Further work is needed to develop templates that cover the
architecture more thoroughly. Due to trace shrinking, the
counterexamples produced are orders of magnitude shorter
than those produced by the other methods, significantly
speeding up debugging cycles.

Several significant bugs have been discovered using
QCVEngine and TestRIG, spanning architectural and
microarchitectural errors in codebases of varying maturities.
We will also discuss its application to debugging the CHERI
security extension [3] and for measuring transient execution
vulnerabilities.
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