
You only use 10% of your FPGA
Quentin Schibler1,2

1Computer Laboratory, University of Cambridge
2École Normale Supérieure Paris-Saclay

Abstract

A RISC-V processor design is usually expected to be clocked at most at 300MHz on the latest high-end
FPGAs, 100MHz being a reasonable average guess. One day I opened up a data sheet and read that
Intel’s Stratix 10 routing fabric can be clocked at 1GHz. This is one order of magnitude higher, but
can we reach such a high frequency, and if not, what is the practical limit? As I set out to explore how
fast and resource-efficient a RISC-V CPU can be on FPGAs, I will share a few guidelines I discovered
along the way. Topics will include various strategies to make timing analysis doable for large designs,
how to take advantage of hyper-registers, reducing area using BRAMs without sacrificing performance,
and managing resets and other high-fanout signals.

Timing Analysis

We developed a technique for doing timing anal-
ysis on subsets of a design, based on the work
in [1]. This simplifies timing analysis by using
a divide and conquer approach. This is because
reasoning about a small part of your design is
simpler, and brings compilation time down, speed-
ing up iterations. We found that the timing for
our designs was within 5% of the worst timing
measurement for each subset. Thanks to that ob-
servation, we will use a subset of the CPU, for the
sake of simplifying, as an example for exploring
guidelines in the following sections. We chose a
FIFO for that purpose, as it is a simple but signif-
icant component that motivated some significant
design choices.

Hyper-registers and BRAM

A common optimization used by P&R algorithms
is to retime registers to improve timing. We suc-
cessfully did so to increase the frequency of a 32-bit
adder from 300MHz to 450MHz, without notic-
ing any significant improvements by adding more
than two pipeline stages. However, by getting rid
of register reset, we are able to retime into hyper-
registers instead. Those were able to cut carry
lines, improving timing significantly, almost reach-
ing the 1GHz fabric limit with 3 pipeline stages.
We are able to exploit the latency/frequency trade-
off to our advantage.

Table 1: Area/Frequency of BRAM and LUT 32-bit
FIFO for different depth

BRAM LUT

2-depth
5 LUT

417MHz
72 LUT
949MHz

8-depth
8 LUT

400MHz
173 LUT
772MHz

16-depth
17 LUT
389MHz

365 LUT
663MHz

We will now add one constraint to our CPU de-
sign: every component has to use elastic pipelines.
This makes it easier to modify and extend the
design. This requires sending every computation
result into a FIFO. According to [2], the depth
of the FIFO must be large enough to absorb a
full pipeline flush, so 8 or 16-depth FIFOs are
common in our design. Using a BRAM for those
is the obvious choice, but as we see in Table 1, it
can be beneficial area-wise even for 2-depth FIFO.
The ratio of LUT to BRAM for Stratix 10 devices
is around 80 LUT/BRAM. To keep a balanced
design, we would ideally use one BRAM for every
80 LUT. To put that into perspective, the ALU
we designed takes roughly 250 LUT.

Timing is an issue though, but it can easily be
improved. First off, we can pipeline the outputs
into hyper-registers, adding one cycle of latency
between a read request and actually receiving the
result. Using LUTs instead doesn’t work well, as
too much slack is needed to go from the BRAM

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1



block to the LUT. The maximum frequency of
BRAMs can only be achieved if we never read
and write to the same address on the same clock
cycle. This is because logic would need to be
created to save the old data, or to forward the
new data. For our FIFO, we can simply add a
cycle of latency between a write and a read (but
still can issue one read and one write every cycle).
Using both techniques, we are able to improve the
FIFO operating speed up to 800MHz. However,
we added 2 cycles of latency, a cost we will pay
on top of the latency of the rest of the design. As
an example, to reach a frequency of 890MHz for
our 32-bit ALU, we needed 8 cycles of latency.
We can already expect the CPU pipeline to be
extremely long. To mitigate this issue that could
lead to costly pipeline flush later down the line,
we decided to choose a barrel CPU design. This is
because it does not suffer from hazard, and thus
does not need pipeline flush.

Managing resets

As we have seen, resets should be limited to a min-
imum so that CAD tools have the most freedom
to retime into hyper-registers. Various strategies
can be used for that purpose. Resetting data
(as opposed to control) registers is usually not
needed, as a valid bit can be used instead, or a
handshake mechanism. Resetting a pipe doesn’t
require resetting every register in the pipe, but
only the first one, and then clocking the design
to propagate the reset value down. Applying this
technique to our FIFO, we can avoid resetting the
head and tail pointer. Instead, we can discard the
first few results from the FIFO until both pointers
are equal again. This allows Quartus to retime
them to hyper-registers, improving performance
up to 993MHz. When you are forced to use a
reset signal, use a reset tree instead to limit high
fanout. In most CAD tools, register pipes can be
duplicated automatically into trees, balancing the
fanout as much as possible.

References

[1] Charles Eric LaForest. “High-speed soft-processor ar-
chitecture for FPGA overlays”. In: 2015.

[2] Mustafa Abbas and Vaughn Betz. “Latency Insen-
sitive Design Styles for FPGAs”. In: 2018 28th In-
ternational Conference on Field Programmable Logic
and Applications (FPL). 2018, pp. 360–3607. doi:
10.1109/FPL.2018.00068.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://doi.org/10.1109/FPL.2018.00068

	Timing Analysis
	Hyper-registers and BRAM
	Managing resets

