
You only use 10% of your FPGA - Optimisation techniques for high FPGA utilisation
Quentin Schibler
Department of Computer Science and Technology, University of Cambridge
École Normale Supérieure Paris - Saclay.
qlas2@cl.cam.ac.uk

We see a use for softcore processors primarily as a robust 
replacement for complex state machines often needed in 
FPGA designs. Such a CPU needs to be quite small and 
utilise the FPGA well, as it trades off performance for ease 
of use. RISC-V is a well-suited ISA for such CPUs thanks to 
its modularity and support for compressed instructions. It is 
no surprise that FPGA vendors as well as the open-source 
community built RISC-V soft cores. Our Rope core 
increases utilisation using a higher clock frequency.

Barrel processor architecture

Diversity of FPGA architectures

Performance of RISC-V softcores

Our Rope core exploits barrel processing to achieve high 
clock frequencies. Barrel processors are a type of 
multithreaded processors sharing a single pipeline between 
harts. Each stage executes a different hart every clock 
cycle. The pipeline can be simplified as no data hazard can 
occur, and no branch prediction is needed. This helps to 
reduce the area and doesn’t penalise deep pipelines as 
much. The logic utilisation is also better as the pipeline is 
fully utilised on every clock, there are no bubbles, and no 
flushes are needed. The downside is that serial execution 
speed is poor, software needs to utilise every thread 
efficiently. 

Table 1. Implementation performance of a variety of RISC-V 
softcores. ** experimental results, might change 
significantly.

On architectures where deep pipelining doesn’t make 
sense, a carry-select adder can improve timing significantly. 
The hard part is computing the carry-in for any block, as it 
requires the carry-in from the previous block. This requires 
routing the signal to multiple LUTs chained together. On 
most FPGAs, LUTs have dedicated fast routing logic for 
carry lines when used as adders. The carry computation 
can be expressed as an addition to make sure the CAD tool 
uses the fast carry lines.

Retiming into Intel’s hyper-registers

Intel FPGAs benefit from splitting combinatorial logic into 
lots of pipeline stages, to make use of hyper-registers. 
Unfortunately, other architectures will suffer from that design 
choice. Changing the number of stages would require a 
major redesign for every platform. Instead, a buffer with a 
FIFO-like interface can be placed after large chunks of 
combinatorial logic.

Using adder for fast carry computation

Generic optimisation techniques

FPGA vendors have different strategies to achieve 
high-performance designs on their architectures. Intel has a 
huge number of registers inside of the interconnect, 
encouraging heavy use of pipelining. On the contrary, small 
FPGAs like the ICE40 don’t have any registers outside of 
the LUTs, long pipelines will greatly increase area usage. 
AMD has an hybrid approach with some register inside of 
the interconnect, and a NoC managing the routing. A barrel 
architecture has the added benefit that it is easier to adapt 
to a variety of platforms, thanks to its simplicity. Rope has a 
concept of a physical pipeline stage number that can be 
parameterized depending on the FPGA used to improve 
timing/area. The logical representation of the pipeline stays 
the same

Background

Timing analysis is a complex process, especially as the design grows larger. Place and route algorithms often hide optimisation 
opportunities as they sometimes spend lots of effort on one poorly optimised path, at the expense of others. They then show up 
as critical paths. Finding the real culprit becomes harder the more paths you have. Reasoning about a smaller part of your 
design is thus important, and brings added benefits, such as reducing compilation time and speeding up iterations. To avoid 
getting optimistic results from CAD tools, a framework for timing analysis is needed.

Figure 1. Execution of 5 harts in a 4 stage pipeline. As long 
as only one hart is waiting for memory, utilisation is 
maximised.

Figure 3. Credit buffer, handshakes can be implemented 
using valid/ready signals
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Stratix 10 Ice 40 UltraScale

Intel NIOS-V 323 MHz / 
1800 ALMs

Not known Not known

Neorv32 311 MHz / 
744 ALMs

92 MHz / 
1130 LCs

347MHz / 751 
LUTs

Picorv32 434 MHz / 
724 ALMs

75 MHz /
1300 LCs

500MHz / 761 
LUTs

Rope 745 MHz / 
620 ALMs

180 MHz / 
1200 LCs **

TBD

Timing analysis strategies

Managing resets

Resets should be kept to a minimum as they tend to be high fanout signals, that increase the place and route problem 
complexity. On some FPGA architectures like Intel’s hyperflex, resets prevent CAD tools from performing crucial optimisations. 
Various strategies can be used to eliminate the need for resets. Resetting data (as opposed to control) registers is usually not 
needed, as a valid bit can be used instead, or a handshake mechanism. Resetting a pipe doesn’t require resetting every register 
in the pipe, but only the first one, and then clocking the design to propagate the reset value down. When a reset signal is truly 
needed, a reset tree can be used instead to limit high fanouts. This can be done automatically by some CAD tools, but better 
results can be obtained manually, and the design will work as expected even using tools that do not support that feature.

Platform dependent optimisation techniques

Figure 2. Framework for analysing timing. The shift register and the XOR gate makes it possible to use only two physical FPGA 
pins regardless of the module I/O width. The loopback around the module makes for a harder P&R problem. 

The inputs to that buffer are sent to a register pipe without 
reset nor enable signals, and a credit buffer counts the 
difference between input and output handshakes. A FIFO 
absorbs any data left on the pipe while the output is stalled. 
The register pipe will be implemented as hyper-registers, 
and they will be retimed into the preceding logic. Optimising 
the ALU for Rope did not require changing the design, only 
changing the depth of the buffer. On the timing framework, it 
reached a frequency of 910MHz with an 8-depth buffer, 
from 330MHz with a 0-depth buffer.

Figure 4. 4-bit carry-select adder. The Carry Module 
computes the carry for the next block using the following 
equation : 
Where     is the carry in for block i, and     ,       the 
precomputed carries.   

Not included in timing analysis Not included in timing analysis


