
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Unlocking the potential of RISC-V with HW/SW co-design
Roddy Urquhart1

1Technical marketing, Codasip

Abstract

The RISC-V architecture was created to cover a wide range of applications. With a good base integer set,

optional standard extensions and a defined approach to custom instructions the RISC-V ISA is well equipped to

handle an enormous variety of computational tasks. To date, the majority of the R & D effort into RISC-V cores

has been focused on essentially replacing well known cores from legacy proprietary architectures. With

semiconductor scaling slowing if not failing, the main way to achieve improved performance efficiently is with

architectural innovation. A wide range of specialized applications is well-suited to the RISC-V ISA but require

specialized processor cores. To meet ongoing demands a larger number of custom processor cores are needed

but there are a limited number of processor design engineers. This demand can be met by both reducing the

design cycle through processor design automation technology and by using existing RISC-V processor cores as

a starting point for customization.

End of the road for traditional processor

design

Electronic products have demanded ever increasing

processing power to be competitive. For decades, Moore’s

Law [1] predicted ever denser circuits by moving to

successively smaller silicon geometries. This relied on the

scaling of transistor sizes and voltages to ensure that power

density remained constant from one silicon geometry to the

next. This Dennard Scaling [2] was the mechanism by which

Gordon Moore’s predictions were achieved. As Karl Rupp’s

50 Years of Microprocessor Trend Data [3] shows,

maximum clock frequencies for microprocessors have been

level since the late 2000s.

General purpose and increasing

performance: A current trend in RISC-V

With the growth of interest in RISC-V and a growing

desire of SoC designers to move away from proprietary

commercial ISAs, much of the RISC-V core development

has focused on replacing existing off-the-shelf processor

cores. This was initially focused on embedded cores moving

up to application processors. A growing choice of RISC-V

application processors is available supporting rich operating

systems such as Linux.

RISC-V has opened up alternatives to traditional X86 and

Arm choices but is this the only application for RISC-V?

Custom compute: A major opportunity for

RISC-V

In their 2018 Turing Lecture, John Hennessey and David

Patterson described how improvements to single thread

processor performance had declined to a depressing 3% per

year [4].

However, they saw the way forward as being architectural

innovation. Instead of relying on standard processor cores

they advocated innovating with domain specific

architectures which would tackle a few tasks and do them

extremely well. To design such architectures, they

recommended using HW/SW co-optimization, open

instruction set architectures (ISAs) and agile design.

Tailoring hardware to a software workload requires

innovation with ISAs or microarchitecture or both. In the

past, developing a custom ISA required a set of skills that

many companies could not provide.

RISC-V massively reduces the threshold to creating a

custom ISA by taking care of necessary basic instructions in

a standard way. The base integer set is minimalist but lays a

foundation for a software ecosystem.

Barriers to implementing custom compute

Creating more specialized and capable processor cores

faces some challenges. Inevitably if there is a move away

from off-the-shelf cores to custom ones there will be many

and varied designs to be implemented. Such designs will

have varied instruction sets, microarchitectures and

toolchains.

Today processor designers are a relatively small

community within the semiconductor industry. This

community alone will not be able to increase the number of

processor designs developed by simply continuing to use

traditional RTL design methods.

The main way in which this dilemma can be resolved is to

reduce design time and effort. Driving down design times

can be achieved in two ways. Firstly, if traditional manual

RTL design development is abandoned in favor of processor

design automation. Secondly, if an existing core comes

reasonably close enough to meeting the needs of a software

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

workload it can be used as a starting point for the custom

core development. The design work can be incremental

rather than a clean slate development.

Automating HW/SW co-design

With custom compute, the goal is to develop cores that

efficiently handle their software workloads. An efficient

implementation will not only deliver performance

specialization benefits silicon area and power consumption.

The starting point for a custom core is analyzing the

software workload. If an initial instruction set is modeled,

the software workload can be profiled, and computational

hotspots identified. The hotspots can be addressed by

defining custom instructions that simplify the computation.

The most effective way of modeling the ISA is to use a

complete architectural description language (ADL) such as

Codasip’s CodAL. It is easy to modify the ADL source code

and then to automatically generate the software toolchain.

The ISA can be quickly and iteratively analyzed and

improved.

An ADL also allows microarchitecture to be described and

refined. For example, if a processor needs to process a

stream of data such as for a video stream it may be valuable

to add registers and arithmetic units outside the main core.

Such additional hardware can be described in the ADL and

then used to generate an RTL implementation. The RTL can

be analyzed and simulated and, if necessary, the ADL code

describing the microarchitecture can be refined.

Examples of custom compute solutions

To illustrate creating custom RISC-V cores using an ADL

and processor design automation, we show two examples.

In the first case, a company was developing an audio

processing SoC with an echo-cancelling algorithm being the

dominant computation. They wanted to consider RISC-V as

an alternative to a previously used Cortex-M core.

They used a minimal RISC-V configuration of a 32-bit L30

core with a 3-stage pipeline. The echo-cancelling software

was profiled using Codasip Studio and the initial cycle count

was too large. With multiplication being intensively used the

first step was to replace the sequential multiplier with a

parallel one. This too resulted in too large a cycle count.

Then experiments were undertaken to add over 40 DSP

custom instructions. This resulted in a core that ran the

algorithm 14.3x faster than the original. The core was

almost double the initial area but the codesize was 43% of

the original.

In a second example, image recognition was undertaken

using a convolutional neural network (CNN) on a Codasip

L31 embedded core [5].

Again, Codasip Studio was used to profile the CNN

algorithm and identified the image convolution operation

as a computational hotspot. The microarchitecture was

extended to include a FIFO register chain for incoming

pixels and the ALU was modified to perform parallel

multiplications of the image pixels by the convolution

weights and to sum up the result.

The modified L31 is 48.3% larger in area but has a

throughput improvement of 5x and power improvement of

3x compared with the original L31.

References

[1] G. E. Moore, “Progress in Digital Integrated

Electronics.” Technical Digest 1975. International Electron

Devices Meeting, IEEE, 1975, pp. 11-13.

[2] R. H. Dennard, F. Gaensslen, Hwa-Nien Yu, L.

Rideout, E. Bassous, A. LeBlanc, (1974). "Design of ion-

implanted MOSFET's with very small physical dimensions".

IEEE Journal of Solid-State Circuits. SC-9 (5): 256–268

[3] K. Rupp, 50 Years of Microprocessor Trend Data,

retrieved 8 March 2023

[4] J. Hennessey, D. Patterson, “A New Golden Age for

Computer Architecture: Domain-Specific

Hardware/Software Co-Design, Enhanced Security, Open

Instruction Sets, and Agile Chip Development”, The 45th

International Symposium on Computer Architecture - ISCA

2018, retrieved 9 March 2023

[5] A. Shchekin, “Compact neural network accelerator in

CodAL – Case study”, retrieved 2 May 2023

https://www.eng.auburn.edu/~agrawvd/COURSE/E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf
https://www.eng.auburn.edu/~agrawvd/COURSE/E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf
https://github.com/karlrupp/microprocessor-trend-data/commit/f2121ab2b83a156b114fe34e62e1edeca98e8e38#diff-f52b115d4425c3170808cf243f96d212c8e01c067bc049a17fc42583ef2a3c92
https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf
https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf
https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf
https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf
https://codasip.com/papers/compact-neural-network-accelerator-in-codal-case-study/
https://codasip.com/papers/compact-neural-network-accelerator-in-codal-case-study/

