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Abstract 

As the RISC-V ISA continues to gain popularity and adoption, there is a growing need for highly configurable 

RISC-V cores that can be customized for specific use cases and applications. However, the complexity and 

variability of these cores make verification a significant challenge, especially when it comes to verifying custom 

instructions. In this paper, we present a cross-level [1] test environment to verify all cores with custom 

instructions and various interfaces without manual adjustments of the test environment, which significantly 

reduces the time and effort required for verification.  

Introduction 

The RISC-V instruction set architecture (ISA) has gained 

widespread adoption due to its open-source nature, 

configurability, and scalability. As the RISC-V ecosystem 

continues to grow, it becomes increasingly important to have 

robust verification methodologies to ensure the quality of the 

designed RISC-V cores.  

The MINRES TGC core family consists of a set of basic 

configurations with varying pipeline stages, registers and 

instruction sets. Each basic configuration can be customized 

and extended with additional features such as different bus 

interfaces, interrupt controllers, memory protection, caches 

and custom instructions.  

This high level of configurability in conjunction with 

functional safety requirements implies a highly automated, 

modular, and reusable verification environment. 

To address this challenge, we use a CoreDSL [2] based 

approach. CoreDSL is a domain-specific language that 

provides a unified representation of the RISC-V ISA and its 

extensions. From a CoreDSL based ISA specification we 

generate artifacts used in our cross-level testbench 

environment. This environment employs a constrained-

random generator to produce an endless stream of 

instructions which are executed on both the ISS and RTL 

models of the core. The behaviour of the ISS is used as a 

reference to verify correct functionality of the RTL model. 

In the following section, we describe the design and 

implementation of the cross-level testbench, and provide 

details on the methodology used to generate and transfer 

instructions, as well as to monitor and compare the 

behaviour of the ISS and RTL implementations. 
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Methodology 

The verification flow starts with description of the core in 

CoreDSL as single-source-of-truth. From this description, 

we generate the instruction accurate and cycle approximate 

ISS implementations, as well as the configuration for the 

instruction generator and functional coverage monitor. 

Fig.1 shows the structure of the cross-level testbench. The 

reference generator module combines the ISS and 

instruction generator to create the reference stream for 

simulation. When the simulation starts, the ISS fetches 

instructions, and the fetch accesses are served by the 

instruction generator. This generator randomly selects 

instructions from the list of available instructions generated 

from the CoreDSL description and passes the instruction to 

the ISS by responding to the fetch access.  

The coverage aging mechanism implemented in the 

instruction generator tracks the randomly selected 

instructions and regulates their generation frequency to 

achieve sufficient functional coverage for each instruction 

while avoiding unnecessary repetitions. 

The ISS generates memory accesses on the data bus 

depending on the executed instructions, and an ISS plugin 

provides insight into the ISS state and delivers information 

on exceptions, jumps, branches, and more. Both memory 

accesses and the internal state changes are recorded in the 

reference generator and stored in a structure that contains all 

the necessary information about the current instruction. The 

structure is then passed on to the UVM agents, which 

forwards it to the DUT as well as to the scoreboard for 

verification of the DUT behaviour. 

The cross-level UVM TB allows flexible and re-usable 

simulation of different hardware designs. The UVM-

SystemC methodology and standard [3] combines the 

powerful features of UVM, a state-of-the-art hardware 

verification methodology with SystemC, which significantly 

simplifies the integration of the ISS, written in C++.  

The UVM-SystemC verification environment is composed 

of several key components, including agents. Agents are 

responsible for interfacing with the DUT. The testbench has 

an iBus and a dBus agent. Each of these consists of a 

sequencer and a driver. The sequencer acts as the central 

component that manages and controls the flow of the 

stimulus to the DUT, ensuring that the testbench applies 

stimuli in the correct order and at the right time.  

During simulation, the DUT initiates instruction fetches. 

These fetch accesses are received by the iBus driver through 

a virtual interface (vif). The vif is a connection between the 

driver and the DUT, that allows them to communicate 

without being bound to a specific implementation. This 

means that the DUT can be replaced with different 

implementations without changing the interface itself.  

All cores of the TGC family have an interface for debug 

and trace purposes. The trace interface maps the internal 

state of the core with each clock cycle, which is then read by 

a UVM monitor. The monitor forwards the information to 

the scoreboard, where it is compared with the state predicted 

by the ISS, reporting any discrepancies that are found. If 

such a discrepancy is detected, an error is reported, the 

testbench dumps a list of last instructions before the error 

occurred and the verification process is stopped.  

Among other checks the scoreboard is also responsible for 

verifying the correctness of memory access. Specifically, it 

ensures that the DUT core is accessing the expected address, 

the access type (READ or WRITE) matches with the ISS, 

and performs other relevant checks. 

Each instruction that is successfully verified in the 

scoreboard is sent to the coverage monitor. The coverage 

monitor is a key component of the verification environment 

that is responsible for collecting and reporting functional 

coverage data. It is based on FC4SC [4] which is currently 

in the process of standardization at Accellera. 

The coverage monitor defines cover groups for each 

instruction type, which include coverpoints that track all 

parameters of an instruction and combinations of parameters 

within an instruction (crosspoints), as well as hazards 

between instructions. These cover groups are instantiated for 

each instruction in the CoreDSL description. They are used 

to identify areas of the design that require further testing to 

ensure complete functional coverage. 

Conclusion 

Overall, the UVM-SystemC cross-level verification 

environment presented in this paper offers a highly effective 

solution for detecting a range of design issues, including 

control and data hazards. This approach is not limited to the 

TGC core family and can be applied to other highly 

configurable RISC-V core families. While this particular 

testbench and TGC core family is used as an example, the 

methodology and tools described here are general enough to 

be applied to other core families with similar levels of 

configurability.  

The modular design of the testbench ensures that new core 

configurations and custom instructions can be added 

seamlessly, without disrupting the existing verification 

environment. The use of UVM-SystemC provides a scalable, 

modular, and reusable solution that can be executed on 

different simulators, including Verilator, Xcellium, or even 

on an FPGA e.g. using Raven. 
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