
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Automated Cross-level Verification Flow of a Highly

Configurable RISC-V Core Family with Custom Instructions
Stanislaw Kaushanski, MINRES Technologies GmbH, Duisburg, Germany (stas@minres.com)

Eyck Jentzsch, MINRES Technologies GmbH, Munich, Germany (eyck@minres.com)

Abstract

As the RISC-V ISA continues to gain popularity and adoption, there is a growing need for highly configurable

RISC-V cores that can be customized for specific use cases and applications. However, the complexity and

variability of these cores make verification a significant challenge, especially when it comes to verifying custom

instructions. In this paper, we present a cross-level [1] test environment to verify all cores with custom

instructions and various interfaces without manual adjustments of the test environment, which significantly

reduces the time and effort required for verification.

Introduction

The RISC-V instruction set architecture (ISA) has gained

widespread adoption due to its open-source nature,

configurability, and scalability. As the RISC-V ecosystem

continues to grow, it becomes increasingly important to have

robust verification methodologies to ensure the quality of the

designed RISC-V cores.

The MINRES TGC core family consists of a set of basic

configurations with varying pipeline stages, registers and

instruction sets. Each basic configuration can be customized

and extended with additional features such as different bus

interfaces, interrupt controllers, memory protection, caches

and custom instructions.

This high level of configurability in conjunction with

functional safety requirements implies a highly automated,

modular, and reusable verification environment.

To address this challenge, we use a CoreDSL [2] based

approach. CoreDSL is a domain-specific language that

provides a unified representation of the RISC-V ISA and its

extensions. From a CoreDSL based ISA specification we

generate artifacts used in our cross-level testbench

environment. This environment employs a constrained-

random generator to produce an endless stream of

instructions which are executed on both the ISS and RTL

models of the core. The behaviour of the ISS is used as a

reference to verify correct functionality of the RTL model.

In the following section, we describe the design and

implementation of the cross-level testbench, and provide

details on the methodology used to generate and transfer

instructions, as well as to monitor and compare the

behaviour of the ISS and RTL implementations.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

Methodology

The verification flow starts with description of the core in

CoreDSL as single-source-of-truth. From this description,

we generate the instruction accurate and cycle approximate

ISS implementations, as well as the configuration for the

instruction generator and functional coverage monitor.

Fig.1 shows the structure of the cross-level testbench. The

reference generator module combines the ISS and

instruction generator to create the reference stream for

simulation. When the simulation starts, the ISS fetches

instructions, and the fetch accesses are served by the

instruction generator. This generator randomly selects

instructions from the list of available instructions generated

from the CoreDSL description and passes the instruction to

the ISS by responding to the fetch access.

The coverage aging mechanism implemented in the

instruction generator tracks the randomly selected

instructions and regulates their generation frequency to

achieve sufficient functional coverage for each instruction

while avoiding unnecessary repetitions.

The ISS generates memory accesses on the data bus

depending on the executed instructions, and an ISS plugin

provides insight into the ISS state and delivers information

on exceptions, jumps, branches, and more. Both memory

accesses and the internal state changes are recorded in the

reference generator and stored in a structure that contains all

the necessary information about the current instruction. The

structure is then passed on to the UVM agents, which

forwards it to the DUT as well as to the scoreboard for

verification of the DUT behaviour.

The cross-level UVM TB allows flexible and re-usable

simulation of different hardware designs. The UVM-

SystemC methodology and standard [3] combines the

powerful features of UVM, a state-of-the-art hardware

verification methodology with SystemC, which significantly

simplifies the integration of the ISS, written in C++.

The UVM-SystemC verification environment is composed

of several key components, including agents. Agents are

responsible for interfacing with the DUT. The testbench has

an iBus and a dBus agent. Each of these consists of a

sequencer and a driver. The sequencer acts as the central

component that manages and controls the flow of the

stimulus to the DUT, ensuring that the testbench applies

stimuli in the correct order and at the right time.

During simulation, the DUT initiates instruction fetches.

These fetch accesses are received by the iBus driver through

a virtual interface (vif). The vif is a connection between the

driver and the DUT, that allows them to communicate

without being bound to a specific implementation. This

means that the DUT can be replaced with different

implementations without changing the interface itself.

All cores of the TGC family have an interface for debug

and trace purposes. The trace interface maps the internal

state of the core with each clock cycle, which is then read by

a UVM monitor. The monitor forwards the information to

the scoreboard, where it is compared with the state predicted

by the ISS, reporting any discrepancies that are found. If

such a discrepancy is detected, an error is reported, the

testbench dumps a list of last instructions before the error

occurred and the verification process is stopped.

Among other checks the scoreboard is also responsible for

verifying the correctness of memory access. Specifically, it

ensures that the DUT core is accessing the expected address,

the access type (READ or WRITE) matches with the ISS,

and performs other relevant checks.

Each instruction that is successfully verified in the

scoreboard is sent to the coverage monitor. The coverage

monitor is a key component of the verification environment

that is responsible for collecting and reporting functional

coverage data. It is based on FC4SC [4] which is currently

in the process of standardization at Accellera.

The coverage monitor defines cover groups for each

instruction type, which include coverpoints that track all

parameters of an instruction and combinations of parameters

within an instruction (crosspoints), as well as hazards

between instructions. These cover groups are instantiated for

each instruction in the CoreDSL description. They are used

to identify areas of the design that require further testing to

ensure complete functional coverage.

Conclusion

Overall, the UVM-SystemC cross-level verification

environment presented in this paper offers a highly effective

solution for detecting a range of design issues, including

control and data hazards. This approach is not limited to the

TGC core family and can be applied to other highly

configurable RISC-V core families. While this particular

testbench and TGC core family is used as an example, the

methodology and tools described here are general enough to

be applied to other core families with similar levels of

configurability.

The modular design of the testbench ensures that new core

configurations and custom instructions can be added

seamlessly, without disrupting the existing verification

environment. The use of UVM-SystemC provides a scalable,

modular, and reusable solution that can be executed on

different simulators, including Verilator, Xcellium, or even

on an FPGA e.g. using Raven.

References

[1] V. Herdt, D. Große, E. Jentzsch and R. Drechsler,

"Efficient Cross-Level Testing for Processor Verification: A

RISC- V Case-Study," 2020 Forum for Specification and

Design Languages (FDL), Kiel, Germany, 2020, pp. 1-7,

doi: 10.1109/FDL50818.2020.9232941.

[2] CoreDSL2 documentation: a domain specific language

to describe instruction set architectures

https://minres.github.io/CoreDSL/

[3] Stephan Schulz, Thilo Vörtler, Martin Barnasconi,

“UVM goes Universal – Introducing UVM in SystemC”

DVCoN Europe 2015

[4] D. Dospinescu, T. Vasilache, “Functional Coverage for

SystemC (FC4SC)” SystemC Evolution Day 2018

https://minres.github.io/CoreDSL/

