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Abstract

We explore whether already compiled RISC-V binaries can be selectively turned into hardware. From a list of
function symbols selected by the designer, Iron automatically generates a hardware design consisting of a SOC
and RISC-V CPU, together with co-processors synthesized from the selected functions machine code. Whenever
the CPU reaches the address of one of these functions, the corresponding co-processor executes instead. This
makes the change from the software to the hardware versions completely seamless, enabling client-side hardware
acceleration, possibly depending on available hardware resources (e.g. various FPGAs).

RISC-V is particularly well suited to this endeavor thanks to its wide adoption, reduced instruction set, many
registers and clean open-source ISA. We discuss a proof of concept, the encountered challenges and the exciting
venues for future work. Iron is an open-source software.

Introduction
Opening the door of hardware design to software devel-
opers has become a key area of focus. This stems from
the need to make hardware design more accessible,
allowing the much larger pool of software developers
to tap in the potential of FPGA and ASIC design [1].

To this effect, huge efforts have been devoted to
design and implement High Level Synthesis tools [2],
capable of taking source code in e.g. the C [3, 4, 5]
or OpenCL languages [6] – to name only a couple –
and turn it into an efficient design. The advantage
of working from the high level language description is
that many compiler-level optimizations are possible,
as language constructs are explicitly available during
synthesis, facilitating loop unrolling, pipelining and
register allocation. For instance, LegUp [3] tightly
integrates within the LLVM framework, to leverage its
intermediate representation for analysis and synthesis.

There are however downsides to working from high
level languages. First and foremost, designs have to be
rebuilt from source, and thus the approach can only
apply where source code is available. The tools are
intrinsically linked to the original language and would
not easily translate to other languages, even though
the LLVM framework does mitigate this. Finally, the
advantage of being able to enrich the original language
with novel keywords also turns into less portable code
that may no longer compile as pure software.

In this work we explore a somewhat unusual point of
view and propose to generate hardware co-processors
out of already compiled RISC-V binaries. At first
sight this seems like a huge penalty, since a compiled
binary carries little information in terms of the high
level language constructs that produced it.

Yet, we seek after a very specific advantage: Work-
ing from a compiled binary means that the software
to hardware step can work on any ELF executable,

regardless of source code availability and regardless of
the initial choice of language. Binaries can be specially
re-optimized to benefit from local hardware resources –
client side – possibly adjusting the mobilized hardware
resources based on the actual usage. Furthermore, im-
provements to the tool can be immediately re-applied
to existing binaries in the field.

The core of our approach is a compiler that takes
as input an ELF binary, analyzes its control flow,
register usage and stack usage, and generates HDL
code (Verilog through Silice [7]). The output is a
SOC embedding a RISC-V CPU and all generated
co-processors, with the CPU seamlessly executing the
hardware counterparts of the functions upon calls – an
execution model overall similar to LegUp.

Methodology
Our approach starts from a RISC-V binary (ELF for-
mat) for a RV32I target. We assume the SOC is built
solely around BRAM. The main steps of our approach
are to first deconstruct the binary, reverting it in a
form that facilitates optimizations on hardware, in
particular re-scheduling and register optimization.
During this analysis step, we perform:

Control flow graph analysis. We extract of con-
trol flow graph (CFG) from the binary, gathering suc-
cessive instructions in blocks such that 1) a new block
starts if it is a target of a jump and 2) a block ends
on a jumping instruction (JAL, JALR, conditional
branches). Under this form, each block can trivially
be turned into a stateless block of combinational logic,
with a global finite state machine (FSM) implementing
the control flow. However, this FSM still has the many
states of the binary program.

De-branching. We perform a de-branch step, which
objective is to reduce the number of node (states) in
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Figure 1: Collapse
performed during de-
branch, where nodes
0710, 071c, 724 are col-
lapsed into a pipelined
loop. Green indicates a
load is present, orange
indicates both a store
and load.

the CFG, collapsing them into larger combinational
blocks. Intuitively, a conditional branch is a if/else
construct where the if jumps and else goes to next
by program counter. In many places we can collapse
the states being reached directly into a combinational
if/else. A non-trivial collapse is illustrated in Fig-
ure 1. This step effectively flattens the CFG into
combinational logic as much as possible. De-branch is
an iterative process greedily applied until no further
collapses can be performed.

Re-reg. Given the flattened CFG we perform a reg-
ister separation pass. In each instruction rd, rs1 and
rs2 are replaced by temporary registers within a block,
based on a data dependency analysis, such that no
combinational cycle is produced. The original regis-
ters x0-x31 are updated only when no longer needed
within the combinational block, before jumping to any
successor block. This results in per-instruction regis-
ter aliasing, which is a list of register assignments to
perform before and after each instruction.

De-stack. On non-recursive functions, we replace
s0-s11 stack push/pop by writes/reads to registers.

We are now ready to enter to design step. To gener-
ate the Verilog we traverse the CFG blocks, producing
the global state machine and writing the instructions
and register aliasing assignments. Instructions are
turned into Verilog expressions, with trivial optimiza-
tions whenever possible. This step has two refinements:

Memory scheduling. We assume execution on
BRAM. We have to ensure that loads/stores are sched-
uled in non-conflicting states. We insert additional
states before any load/store following a preceding one
in the same block. Note that no additional registers
need to be introduced: temporary registers added
during re-reg are automatically promoted into actual
flip-flops as required by the state split.

Pipelining. We identify simple opportunities for
pipelining, in particular blocks looping on themselves
that contain a single load (Figure 1, blue box). These
are turned into two-stages pipelines, such that the
entire loop executes in one cycle.

Results and limitations
We compare execution in simulation using verilator,
in terms of equivalent instruction per cycles (eqIPC).

case eq fmax LUTs description
IPC MHz

bubble sort 5.0 61 4484 A simple bubble sort.
factorial 4.9 64 3767 Computing factorial n.

rotating xor 7.9 64 4683 Rotating xor pattern on screen.
sqrt(int) 4.2 54 7101 Per pixel to draw circles.

F.Bellards Pi 5.0 (*) (*) Decimals of Pi (n=5).

Table 1: CPU only version: 3151 LUTs at 63 MHz.
Compiled for RV32I: mul, div and fp ops emulated.
(*) simulation only.

We compile with gcc -O3. We first run the CPU-only
version to count the number of retired instructions. We
synthesize onto hardware on an ULX3S 85F board with
yosys [8] and nextpnr [9]. We report LUT and fmax
between software/hardware. Results are in Table 1.
Limitations. Clearly there are many more opportu-
nities in de-branch, most importantly allowing nodes
to be duplicated. Our pipelining is preliminary, and
exciting opportunities exist to relax fmax and improve
throughput with auto-pipelining [10]. We partially
support JALR through heuristic detection of jump ta-
bles (this is used in the software floats, for instance).
Arbitrary JALR would otherwise prevent generating
hardware ; we did not observe any such case in our
tests from gcc.
Source code. Iron and its source code can be found
at https://github.com/sylefeb/iron.
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