
HPDCache Verification

Functional Verification Strategy for an
Open-Source High-Performance L1 Data-Cache for

RISC-V cores
Tanuj Khandelwal1, Ludovic Pion1, César Fuguet1, Adrian Evans1 ∗

1Univ. Grenoble Alpes, CEA, LIST
F-38000 Grenoble, France

Abstract

The verification of caches is particularly challenging, as it is necessary to ensure that the memory consistency is
ensured in all conditions and modern caches contain many complex features (out of order execution, write buffer,
multiple request ports) and a complex micro-architecture in order to ensure high-performance. The recently
released, Open-Source High Performance L1 Data Cache (HPDCache) for the RISC-V is delivered as a highly
configurable RTL model, compounding the verification challenge as correct behaviour must be ensured for all
combinations of the parameters. An approach combining pseudo random constraint and directed random test
within the framework of Universal Verification Methodology (UVM) is used to be able to verify HPDcache.

Introduction

Cache memories are an essential component of modern
processors. Caches are part of the memory hierarchy
and help fill the increasing processor performance ver-
sus memory bandwidth gap.

0 1 2 N-1
N

HPDcache

HPDcache
Core

...

Hardware
Memory

Prefetcher1 request/cycleArbiter

Read
Miss

Request

Read
Uncached

Request

Write/AMO
Uncached

Request
Write

Request

up to 64 bytes/cycle

up to 64 bytes/channel/cycleMemory Interface

Write BufferMSHR

Data/Directory

RTAB

CSR

Requesters

Figure 1: HPDcache Top

This work discusses the verification of the HPDcache.
Figure 1 shows the top level of the HPDcache. The
HPDcache is a highly-configurable, high-performance
L1 Data Cache for RISC-V cores. It is implemented in
SystemVerilog, uses a permissive open-source license,
and is accessible through the OpenHW Github1. The
objectives of this cache are on the one hand to enable
both a high throughput and energy efficiency, and on
the other hand, to provide several static (compilation-
time) and dynamic (run-time) parameters to enable
fine-tuning for systems with different performance,
power and area (PPA) constraints.

∗Corresponding author: Tanuj-Kumar.KHANDELWAL@cea.fr
1 https://github.com/openhwgroup/cv-hpdcache

UVM Testbench Architecture

The Universal Verification Methodology (UVM) is
used to verify the HPDcache. The architecture of
UVM testbench is shown in Fig. 2.

HPDcache DUT
Memory
Agent

HPDcache Scoreboard

HPDcache
Request

Agent

Memory Response Model

Memory
Request Arbiter

HWPF
Stride

Scoreboard
HWPF Stride

Reset
Driver

Clock
Driver

Watch
Dog

vif

Memory
Partition

axi2mem
vif vif

vif

vif

Monitor

CSR

BP
Driver

Memory Rsp
Configuration

Top
Configuration

HPDCache
Shadow

Memory
Shadow

Figure 2: UVM Testbench Environment

Following are the key components of environment:

• An out-of-order memory response model
• HPDcache request agent
• Memory partition agent
• Reset, clock and back-pressure drivers, watch dog.

Checking

The scoreboard is extended from uvm scoreboard. The
scoreboard performs the following notable checks:

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:Tanuj-Kumar.KHANDELWAL@cea.fr

HPDCache Verification

1. Data consistency using shadow memory at byte
granularity to check RISC-V Weak Memory Or-
dering (RVWMO)

2. Full prediction of Write Buffer Coalescing
3. Partial eviction (PLRU) prediction
4. Full error prediction

Directed Random Stimulus

The stimulus is grouped into tests using fully random
and directed random sequences. Some notable example
sequences include:

1. Totally random sequences which respect correct-
ness constraints

2. Targeting a small memory partition to provoke
conflicts

3. Focused on atomic operations
4. Sequences focusing on back-pressure to stress the

write-buffer
5. Designed to stress hit,miss and eviction

Coverage/Assertion Driven Verification

The verification strategy is documented in a testplan
containing an enumeration of :

1. Tests
2. Black box functional coverage
3. White box functional coverage
4. Assertion checks
5. Assertion coverage/schmoos

Functional Coverage SystemVerilog covergroups
are used to cover stimulus, this example covers the
cross of sets and words in the cache:

cov_set : coverpo in t s e t
cov_word : coverpo int word ;
c r o s s : c r o s s cov_set , cov_word , cov_op ;

Coverage Assertions Assertions can be used to
ensure all temporal relationships between two events
have been covered (called a schmoo).

for (c l k =0; c lk<= 5 ; c l k++) begin
property schmoo ;
@(posedge c lk_i)
(arb_req_valid & arb_req_ready ,
s e t = dcache_req_set ,
tag = dcache_req_tag)
|−> ##c lk
(mem_req_miss_read_valid_o &
mem_req_miss_read_ready_i &
mem_rd_miss_set == se t &
mem_rd_miss_tag == tag) ;

endproperty

u_cov : cover property (schmoo)
end // f o r

Checking Assertions Assertions are also used to
check the correctness of protocols and handshakes.

arbiter_ready_onehot :
a s s e r t property (
@(posedge c lk_i)

($onehot0 (core_req_ready)) else
$e r r o r ("More␣than␣one␣ reque s t ") ;

Compile Time Parameters

The HPDcache, like many IPs, is parameterizable. Ver-
ilog parameters in the RTL, define, for example, the
number of SETS or of WAYS. There are 19 different
parameters, which can give millions of possible combi-
nations, making HPDcache verification very challeng-
ing. At compile time, the design is elaborated based
on a single parameter configuration.

To ensure the HPDcache is functionally correct for
all values of the parameters, a SystemVerilog module
with knowledge of the parameters and associated con-
straints, is used to generate valid sets of parameters.
A new, generic tool is used to generate the configura-
tions (random, corners, exhaustive) and launch a full
regression with the selected parameter values.

Conclusions

For the HPDcache to reach a TRL7, it will be delivered
with the industrial quality verification suite described
in this paper that will be made available as open source.
Cache verification is challenging [1]. In this paper, we
have focused on functional verification, however, the
performance verification [2] is also an important aspect
that must also be addressed.

Acknowledgements

This work has been performed in the context of the
TRISTAN project. TRISTAN received funding from
the Key Digital Technologies Joint Undertaking (KDT
JU) under Grant Agreement no. 101095947.

References

[1] Henschel et al. “Pre-silicon verification of multiprocessor
SoCs”. In: 2013 IEEE ICECS. 2013.

[2] Desalphine et al. “Novel Method for Verification and Per-
formance Evaluation of a Non-Blocking Level-1 Instruction
Cache”. In: 2020 IEEE VDAT. 2020.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

	Introduction
	UVM Testbench Architecture
	Checking
	Directed Random Stimulus
	Coverage/Assertion Driven Verification
	Functional Coverage
	Coverage Assertions
	Checking Assertions

	Compile Time Parameters

	Conclusions
	Acknowledgements

