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Abstract

The performance of Machine learning and graph-based applications is hampered by the inefficient use of memory
bandwidth caused by their sparse access patterns. In order to improve bandwidth utilization in a RISC-V based
vector accelerator, the Memory Engine for Decoupled Execute/Access (MEDEA) combines a hardware engine
that handles vector loads and stores efficiently with a dedicated core that supports memory-intensive operations
such as spinlocks and memcpy. Although work on MEDEA is still in progress, simulations show that it can have
a large impact on the performance of sparse-memory applications such as SpMV.

Introduction

Efficient use of memory bandwidth is well documented
as a key factor in High Performance Computing
(HPC) [1]. It is critical in applications with sparse
memory accesses, given that HPC systems are opti-
mized for access patterns that exhibit spatial and
temporal locality. The Accelerated Compute and
Memory Engine (ACME) [2] is a RISC-V based high-
performance architecture targeting both dense and
sparse workloads. ACME is a chiplet-based, 2D tiled
design targeting Exascale-class systems.

ACME increases memory-level parallelism (MLP) by
shifting memory-accessing responsibilities from com-
pute tiles to specialized memory tiles, connected as
shown in Figure 1. These Memory Engine for Decou-
pled Execute/Access (MEDEA) tiles improve within-
and across-thread concurrency through local buffering
and efficient vector data processing.
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Figure 1: MEDFEA: decoupled memory-access engines.
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High-Bandwidth Memories (HBM) and 2 Non-Volatile
RAM (NVRAM) devices. The compute and memory
tiles are connected through a NoC and there is a
crossbar interconnecting all the MEDEA tiles and
memories. The interfaces to HBM and NVRAM in
each MEDEA are seen only by its memory controller
and are governed by published standards.

Each ACME compute tile contains a number of
compute nodes, each comprising a scalar core and its
associated Vector Processing Unit (VPU), which can
operate concurrently. The ACME VPU capabilities
are extended to support vector operations with sparse
and very long vector operands. VPUs are well-known
accelerators due to their capability to exploit data-level
parallelism (DLP) through single-instruction multiple-
data operation. By decoupling the access and execu-
tion engines, ACME adds capabilities near the memory
controller to increase MLP. Figure 1 shows a memory
path through MEDEA that bypasses cache memories.
This path is used by the VPU to complete vector
loads and stores. MEDEA transfers vector data be-
tween memory and the VPU Long Vector Register File
(LVRF). Indexed vector loads and stores, which are
the major latency-inducing steps in sparse operations,
are handled by MEDEA close to memory. Vector el-
ements are packed as a dense vector representation
and then transferred to the LVRF, saving power by
bypassing the cache hierarchy but also reducing NoC
traffic. The MEDEA path to memory is most effective
in streaming, non-unit stride and sparse accesses.

MEDEA

A MEDEA tile services requests from compute tiles. It
handles all requests from a given compute node in strict
order. There are primarily four requests: L2 cache
misses, TLB misses, vector loads/stores and memory-
intensive operations (such as memcpy or spinlocks).
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Figure 2: MEDEA microarchitecture and interfaces.

Figure 2 shows the MEDEA microarchitecture,
which can maintain multiple in-flight requests. It is
organized as three parallel elastic pipelines that handle
TLB, cache and vector requests. The pipelines merge
together to drive the memory interface.

Cache requests are essentially transferred transpar-
ently to memory and the result sent back to the re-
questing compute node. TLB requests cause a TLB
lookup to translate the virtual address to a physical
address. On a miss a page table walk is executed and
the TLB updated. Vector request, on the other hand,
are where most of the interesting action takes place.

MEDEA supports long vector operations. For this
reason, the Vector Fragment Sequencer (VFS) breaks
vectors into fragments, according to memory crossbar
data width and burst length. Each fragment gener-
ates a separate memory transaction. The data of the
different transactions is put together in the LVRF.

RISC-V vector operations support three different ad-
dressing modes: unit stride, strided and indexed. Unit
stride requests are managed as dense memory accesses.
On the other hand, strided and indexed requests are
sparse accesses. In these cases, MEDEA fragments
accesses based on the stride or the index, which may
result in fragments that contain a single vector ele-
ment. These elements are collected and packed locally,
and trasferred to the LVRF as a dense vector with the
corresponding energy and NoC traffic savings.

The prefetcher module can non-speculatively
prefetch vector data based on the difference between
the application vector length (AVL). requested by the
application, and the Granted Vector Length (GVL),
which is constrained by the physical limits of the LVRF.
Once an initial vector request has been made, the tile
can prefetch the next GVL worth of vector elements
knowing that the request will eventually arrive.

Memory operation requests are handled by the Mem-
ory CPU (MCPU), a scalar processor with a tightly-
coupled memory and a low-latency interface to the

memory controller. The MCPU provides a collection of
library memory-intense functions that can be accessed
remotely by the compute tiles. The functions are exe-
cuted locally, close to memory, with the corresponding
performance, energy and NoC traffic improvements.

Discussion

Different hardware-based approaches, e.g., [3], have
been used to improve memory bandwidth utilization
for sparse workloads. In some cases a HW/SW code-
sign approach, e.g., [4], presents the user/compiler with
an API to manage the associated hardware. MEDEA,
on the other hand, contains a hardware engine that
handles vector memory accesses efliciently and a dedi-
cated core that supports memory-intensive operations.
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Figure 3: SpMYV execution times.

Sparse Matrix Vector (SpMV) is a benchmark com-
monly used to evaluate performance for sparse memory
access patterns. Figure 3 shows SpMV execution times,
in clock cycles, of two different simulated systems, one
with MEDEA (WM) and one without it (NM). The
graph shows that, as the number of different vector el-
ements used grows, NM simulated times grow linearly
while WM times remain essentially constant due to
the increased MLP provided by MEDEA.
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