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Abstract

Both software and physical attacks are serious threats for Internet of Things (IoT) devices. Low-cost and
low-power processors are usually the key component of these systems. They manipulate sensitive data leading to
strict security needs. In this paper, we study the impact of Fault Injection Attacks (FIA) on protected RISC-V
processor integrating a Dynamic Information Flow Tracking (DIFT) mechanism against software threats.

1 Introduction

Dynamic Information Flow Tracking (DIFT) tech-
niques can detect various software attacks, for example,
buffer overflow, SQL injections, or malware, by attach-
ing and propagating tags to information containers at
runtime [1]. A tag check security policy allows rising
an alert when a malicious behaviour is detected. Sev-
eral DIFT implementations have been studied in the
literature: hardware, software, and hybrid DIFT [2].
Information containers will differ on which type of
DIFT is used; these range from files to registers. In
this paper, we consider hardware DIFT operating at
a hardware level.

Hardware DIFT solutions can be grouped into
two main categories: off-core and in-core. Off-core
DIFT [3] relies on a dedicated co-processor to perform
tag-related operations. This approach does not require
internal processor modification and reduces the com-
putation load on the main processor. However, the
communication and synchronization between the main
processor and the co-processor need to be carefully
managed. In-core DIFT leads to internal modification
of the processor. Tag-related operations are spread
over the pipeline stages and are computed in parallel
with the data treatments. Compare to the off-core
approach, it does not require specific communication
and synchronization management. However, signifi-
cant invasive changes to the processor are required. In
this paper, we consider the D-RI5CY processor imple-
menting the in-core DIFT proposed in [4]. We analyse
the impact of Fault Injection Attacks (FIA) on the
efficiency of the D-RI5CY DIFT mechanism.

The rest of the paper is structured as follows. Sec-
tion 2 presents the main motivations of this work.
Then, Section 3 studies the impact of FIA on the D-
RI5CY DIFT mechanism. Finally, Section 4 concludes
the work and draws some perspectives.

2 Motivation

FIA can be performed by disturbing the power supply,
or the clock, using EM pulse or laser shots [5]. The
impact of injection varies depending on the type of

FIA. Laser injections are the most precise in terms of
spacial and temporal precision while the power supply
or clock will affect the whole circuit limiting the spatial
precision.

Figure 1 presents an overview of the D-RI5CY pro-
cessor. DIFT-related components are highlighted in
red. These components allow to store, propagate and
check tags during the execution of a sensitive appli-
cation. The security policy is configured through two
CSR named TPR and TCR.

In this work, we propose to combine software and
physical attacks to defeat the DIFT mechanism imple-
mented in the D-RI5CY processor. We consider an
attacker able to inject faults in the registers related to
the DIFT-related components since several physical
faults lead to a setup/hold time violation in flip-flops.
We consider 3 types of injections: set to 0, set to 1, or
a bit-flip at a random position of the targeted register.
In the next section, we analyse the behaviour of the
DIFT mechanism in the presence of such faults. The
results of this analysis will help to build a robust DIFT
mechanism in future works taking into account both
software and physical attacks.
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Figure 1: Overview of the D-RI5CY processor

3 Vulnerability assessment

To analyse the potential vulnerabilities, we have stud-
ied the case of the exploitation of a buffer overflow
leading to a Return-oriented programming (ROP) at-
tack1 and the execution of a shellcode.
1 https://github.com/sld-columbia/riscv-dift/blob/
master/pulpino_apps_dift/wilander_testbed/
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The attacker exploits a buffer overflow to reach
the return address (ra) register. Due to the DIFT
mechanism, the tag associated with the buffer data
overwrites the ra register tag. Since the buffer data is
manipulated by the user, it is tagged as not trusted (tag
value = 1). When returning from the called function,
the corrupted ra register is loaded into PC (Program
Counter) via a jalr instruction. The execution flow is
hijacked and the first shellcode instruction is fetched
from the address (0x6fc). These steps are presented
in Cycle 1 and Cycle 2 of Figure 2. This figure also
shows the ra register tag propagation. At Cycle 1, this
tag is extracted from the register file tag. At Cycle
2, it is propagated in a register called pc_if_o_tag.
At Cycle 3, the tag is propagated in a register called
pc_id_o_tag and the first shellcode instruction is
decoded. Since the ra has been tagged as not trusted,
an exception is raised during the tag check process. It
is worth noting that the D-RI5CY processor relies on
the illegal instruction mechanism to stop the attack.

Cycle 1

Decode jalr to shellcode

Register File Tag

ID stage

IF stage

Fetch : 0xc34: addi sp, sp, -128
Decode : 0xc30: jalr zero,ra,0
Execute : 0xc2c: addi sp, sp,
128
WB : 0xc28: lw s0,120(sp)

Cycle 2

Fetch 1st instruction shellcode

IF stage

Fetch : 0x6fc: addi sp, sp, -16
Decode : 0xc30: jalr zero,x1,0
Execute :
WB : 0xc2c: addi sp, sp, 128

Cycle 3

Fetch 2nd instruction shellcode
Decode 1st instruction shellcode

ID stage

Fetch : 0x700: sw ra,12(sp)
Decode : 0x6fc: addi sp, sp, -16
Execute :
WB :

rf reg[1]

pc if o tag

pc id o tag

Exception handling

Figure 2: Tag propagation in a buffer overflow attack

Figure 2 shows that the DIFT mechanism can be
impacted for 3 cycles before the exception is raised.
To further study the sensitivity of this mechanism
against FIA, Figure 3 details the logic relations be-
tween processor registers (yellow boxes) and control
signals (blue boxes) driving the illegal instruction ex-
ception signal (red box). An attacker performing fault
injections would like to drive the exception signal to ’0’
to defeat the D-RI5CY DIFT solution. Figure 3 shows
that a single fault could lead to a successful injection
since all paths are built with AND gates. For exam-
ple, if we set register rf_reg[1] to 0, the tag will be
propagated from gate 1 up to gate 4. Finally, in gate 5
there will be a comparison between 1 (from the tcr_q
value) and 0 (from pc_id_o_tag) so it will result in
a 0 value from this gate. Table 1 shows the locations
and fault types leading to a successful injection for the
considered ROP attack.

4 Conclusion and perspectives

This paper studies the impact of FIA on the D-RI5CY
DIFT solution. It shows that a single fault could
defeat the DIFT security policy. We plan to extend
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Figure 3: Logic representation of tag propagation in a
buffer overflow attack

set at 0 set at 1 bitflip

pc_if_o_tag ✓ ✓
rf_reg[1] ✓ ✓
tcr_q ✓ ✓
tpr_q ✓ ✓

Table 1: Location and fault types for successful FIA

this work by studying the impact of FIA on the entire
D-RI5CY DIFT solution. We will perform intensive
fault injection emulation and actual injection targeting
FPGA implementation. The obtained results will be
analysed in order to build a DIFT solution robust
against FIAs.
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