
Extending OpenPiton framework towards the
HPC domain: first steps

Xabier Abancens1, Mohsin Shahbaz1, Teresa Cervero1, John Davis1,
Guillem Lopez1,2, Miquel Moretó1,2 ∗

1Barcelona Supercomputing Center (BSC), Barcelona,
2Universitat Politecnica de Catalunya (UPC), Barcelona

Abstract

HPC applications are demanding more specialized accelerators to tackle with their increasing complexity, and
requirements. This context, together with the fact that Europe is promoting the use of the open source RISC-V
ISA, brings the opportunity of exploring the design space for specific working scenarios. For research and
exploration purposes, OpenPiton could be a well-suited framework for future manycore accelerators designs,
although there are several areas that should be improved to achieve HPC performance. This paper presents an
extension of the OpenPiton framework towards the HPC domain, starting from modifying the computational
elements, the Tiles. In addition, this paper extends the SystemVerilog verification environment, but also the
FPGA implementation.

Introduction

Europe is focused on digital autonomy, especially for
High Performance Computing (HPC). As a conse-
quence, an undeniable effort is being doing in the
adoption of the open-source RISC-V ISA for the devel-
opment of new architectures. In this scenario, Open-
Piton [1] could play a significant role; at least for
research and exploration purposes.

OpenPiton is a manycore research framework that
comprises different tools and modules to build, test and
implement RTL designs. Originally, it was developed
for the SPARC v9 architectures (OpenSPARC T1).
Later on, the framework has been adapted for RISC-
V architectures, being the one with Ariane core [2]
a reference design. Taking this design as a golden
reference, it is clear that is far from being HPC-friendly.
To correct this situation, several modules should be
incrementally improved: 1) the Tile, 2) the Memory
hierarchy (L1, L2 and L3 levels), 3) the NoC. The
targeted baseline accelerator is shown in Figure 1,
composed by the OpenPiton framework plus a new
Tile, based on a RISC-V design Drac Vector IN-Order
(DVINO) processor [3].

DVINO as a Tile in OpenPiton

DVINO is a system composed by a Scalar Core (SC)
with a coupled accelerator, connected through the
Open Vector Interface (OVI) [4].

∗The MEEP project has received funding from the European
High-Performance Computing Joint Undertaking (JU) under
grant agreement No 946002. The JU receives support from
the European Union’s Horizon 2020 research and innovation
program and Spain, Croatia, and Turkey

Figure 1: Block diagram of a multicore system based in
OpenPiton with DVINO as a Tile

Compared to the Ariane Tile, DVINO brings the
possibility for: 1) a straightforward compatibility with
all RISC-V cores within the Lagarto family; including
in-order and out-of-order cores, and 2) support for one
or multiple accelerators; in this paper we focus on the
vector processing unit (VPU).

Enhancements at Tile-level

DVINO includes a Lagarto Hun SC. A single-issue
in-order RISC-V core that implements the 64-bit
RV64IMA scalar RISC-V ISA v2.2 and privileged ISA
v1.11, with a 5-stage pipeline datapath [5]. In addition,
as an accelerator, it supports a VPU based on a design
developed for the European Processor Initiative (EPI)
project [6].

Scalar core modifications At core level, the en-
hancement were applied on the pipeline; moving from
a basic Lagarto Hun RV64IMA(V) with 5 stages to a
Lagarto Hun RV64GC(V) with 6 stages.

Firstly, support for single and double precision float-
ing point operations (F/D extension version 2.2) was
incorporated. Secondly, support for the compress in-
struction extension (C version v2.0) was added. As
a result, the core has the capability of booting Linux
distributions; currently Fedora.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1



Vector Processing Unit modifications The orig-
inal VPU was adapted in multiple ways, being the
most relevant for this paper: 1) fusing vector lanes
in pairs, 2) adding the capability of configuring the
amount of active lanes (2, 4, 8 or 16 lanes).

DVINO integration in OpenPiton To guarantee
a smooth integration of DVINO, as a Tile in Open-
Piton, we reused the Ariane L1 cache subsystem. Con-
sequently, we adapted the cache interfaces on the SC
side to ensure a correct communication protocol with
L1 caches. A Performance Monitoring Unit (PMU)
is added per core, which includes CSRs for getting
metrics about the Tile behavior, including scalar and
vector instructions.

Verification

The reference design OpenPiton+Ariane provides a
self-checking simulation environment to run a regres-
sion and continuous integration bundles. The setup is
able to compile and run tests on the simulation model
from an available test suite [7] containing RISC-V tests
and benchmarks written in assembly or C language.

Verification environment enhancements

Implementation of ISA Scoreboard The major
component added to the framework is the Verifica-
tion Scoreboard, connected to the commit stage of the
scalar core. It performs the ISA state checking at each
instruction commit. To achieve this per-commit com-
parison, the open source Spike ISS [8] is modified to
step the simulation by one instruction and integrated
with the testbench with DPI functions.

Implementation of Memory Scoreboard A mem-
ory scoreboard is added to monitor any memory trans-
action going out of the core. It contains a store checker
which compares the store address and data being
stored after each instruction with that of Spike. It also
monitors any intrinsic stores done by the core such as
updates of A and D bits of page tables.

Addition of an ISA Coverage model A coverage
model is developed in System Verilog, consisting of
two major parts: 1) Unprivileged and, 2) Privileged
RISC-V ISA. The Unprivileged coverage model targets
the ISA instructions for each implemented RISC-V
extension in the scalar core. The coverpoints cov-
ers the fields of each instruction and then taking the
cross coverage to cover every possible combination.
The Privileged ISA coverage model is made on the
grounds of RISC-V Privileged ISA spec, focusing on
the topics of Control Status Registers, Interrupts and
Exceptions, Virtual Memory and their interrelated
behaviours. These coverage models have enabled the

testbench to cover and verify RTL functionalities not
simply visible through code coverage.

Continuous Integration (CI) on Gitlab

A Gitlab CI has been configured with two pipelines:
sanity regression and nightly regression. The san-
ity regression is run for every push to the repository
and consists of Compliance tests and some random
tests targeting the available extensions in the core
i.e. RV64GC(V). The nightly regression is a periodic
pipeline which consists of a set of 200 random tests
generated with riscv-dv [9].

FPGA results

Extending FPGAs support One of our contri-
butions to the OpenPiton project is the additional
support for the Alveo U280 and U55C FPGAs, from
Xilinx. These cards offer higher density in resources
and memory, among other features.

Supporting a custom FPGA Shell In addition,
the framework has been adapted to be compatible with
a flexible, adaptable and configurable FPGA Shell [10],
which provides a seamless communication between the
host and the accelerator implemented in the FPGA.

References

[1] Jonathan Balkind et al. OpenPiton: An Open Source
Manycore Research Framework. url: http://doi.acm.
org/10.1145/2872362.2872414.

[2] Jonathan Balkind, et al. OpenPiton+Ariane: The First
SMP Linux-booting RISC-V System Scaling from One to
Many Cores. https://carrv.github.io/2019/papers/
carrv2019_paper_12.pdf.

[3] Guillem Cabo et al. DVINO: A RISC-V Vector Proces-
sor Implemented in 65nm Technology. doi: 10.1109/
DCIS55711.2022.9970128.

[4] Roger Espasa et al. AVISPADO - VPU Inter-
face. url: https : / / github . com / semidynamics /
OpenVectorInterface.

[5] Jaume Abella et al. An Academic RISC-V Silicon Im-
plementation Based on Open-Source Components. doi:
10.1109/DCIS51330.2020.9268664.

[6] The European Processor Initiative. https : / / www .
european-processor-initiative.eu/accelerator/.

[7] RISC-V Software. riscv-tests. url: https://github.com/
riscv/riscv-tests.git.

[8] RISCV. The Spike RISC-V ISA Simulator. https://
github.com/riscv/riscv-isa-sim. Sept. 2020.

[9] Google, Inc. Random instruction generator for RISC-V
processor verification. url: https://github.com/google/
riscv-dv.

[10] Daniel J. Mazure, et al. Enabling RISC-V in Large Scale
FPGA Platforms. https://open- src- soc.org/2022-
05/media/posters/4th-RISC-V-Meeting-2022-05-03-
Daniel-Mazure-poster-abstract.pdf.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

http://doi.acm.org/10.1145/2872362.2872414
http://doi.acm.org/10.1145/2872362.2872414
https://carrv.github.io/2019/papers/carrv2019_paper_12.pdf
https://carrv.github.io/2019/papers/carrv2019_paper_12.pdf
https://doi.org/10.1109/DCIS55711.2022.9970128
https://doi.org/10.1109/DCIS55711.2022.9970128
https://github.com/semidynamics/OpenVectorInterface
https://github.com/semidynamics/OpenVectorInterface
https://doi.org/10.1109/DCIS51330.2020.9268664
https://www.european-processor-initiative.eu/accelerator/
https://www.european-processor-initiative.eu/accelerator/
https://github.com/riscv/riscv-tests.git
https://github.com/riscv/riscv-tests.git
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/google/riscv-dv
https://github.com/google/riscv-dv
https://open-src-soc.org/2022-05/media/posters/4th-RISC-V-Meeting-2022-05-03-Daniel-Mazure-poster-abstract.pdf
https://open-src-soc.org/2022-05/media/posters/4th-RISC-V-Meeting-2022-05-03-Daniel-Mazure-poster-abstract.pdf
https://open-src-soc.org/2022-05/media/posters/4th-RISC-V-Meeting-2022-05-03-Daniel-Mazure-poster-abstract.pdf

	Introduction
	DVINO as a Tile in OpenPiton
	Enhancements at Tile-level
	Scalar core modifications
	Vector Processing Unit modifications
	DVINO integration in OpenPiton


	Verification
	Verification environment enhancements
	Implementation of ISA Scoreboard
	Implementation of Memory Scoreboard
	Addition of an ISA Coverage model

	Continuous Integration (CI) on Gitlab

	FPGA results
	Extending FPGAs support
	Supporting a custom FPGA Shell



