
CHERI-RISCV Extension Progress

Robert N. M. Watson1, Alex Richardson2, Jessica Clarke1, Brooks Davis3, Lawrence Esswood2, Ben Laurie2,
Simon W. Moore1, Peter Rugg1, Alexandre Joannou1, and Peter Sewell1

1University of Cambridge

2Google

3SRI

Abstract

The CHERI ISA extensions for security have been under development for the last 13 years and have seen implementations in the MIPS, RISCV
and ARM ISAs. It has recently seen its first commercial RISCV implementation and several companies are showing interest in the technology.
The CHERI-RISCV SIG aims to capture a minimum useful specification for CHERI-enhanced RV32 and RV64 ISAs. We aim to support the
commercial implementation of a CHERI-enabled single-core RV32 or multicore RV64 configuration. For 64-bit, the ISA would support virtual
memory suitable to use in lower-end computing environments that run operating systems such as Linux, FreeBSD, and seL4. However, our
current focus is on vertically integrated hardware-software 32-bit stacks built by early adopters to provide a consistent minimal baseline that
future specifications can extend.

Standardization scope
The starting point for this work is the SRI/Cambridge baseline
CHERI-RISC-V 64-bit prototype specification , , , for which1 2 3

multiple FPGA-based cores, a formal Sail model, and
complete software stack including CHERI LLVM toolchain
and multiple operating-system adaptations have been
developed. The aim in this work is to select and standardize a
mature subset of that specification, while making necessary
adaptations such as formal opcode allocations, maturing the
capability format, and laying necessary groundwork to ensure
that future extensions can build on the initial version. This
work will learn from 32-bit work including at SRI/Cambridge
and also the recently released Microsoft CHERIoT embedded
microcontroller ISA specification .4

CHERI aspects considered

Some aspects of the CHERI model are extremely mature (e.g.,
those relating to C/C++ memory safety), whereas others are
the subject of ongoing research (e.g., software
compartmentalization based on otypes). The initial focus of
the standardization effort is around the more mature aspects,

4 CHERIoT: Rethinking security for low-cost embedded systems:
https://www.microsoft.com/en-us/research/uploads/prod/2023/02/cher
iot-63e11a4f1e629.pdf

3 Automatically built drafts from the cheri-specification repository:
https://github.com/CTSRD-CHERI/cheri-specification/tags

2 CHERI specification working version GitHub repository:
https://github.com/CTSRD-CHERI/cheri-specification

1 CHERI ISAv8:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html

with the intention of integrating well with maturing elements
of the CHERI design as they proceed. The aspects currently
being considered are:

- 128-bit capabilities over a 64-bit baseline ISA, and 64-bit
capabilities over a 32-bit baseline ISA, with a specific
architectural format and a clear path to future expansion

- CHERI features to support C/C++ memory protection
including subobject bounds and efficient stack alignment

- CHERI features to support sealed entry (sentry) protection of
control-flow pointers

- CHERI features to support safe, capability-aware exception
handling

- CHERI features to support efficient temporal memory safety

- Tagging behavior for memory

- Concurrency behavior for memory

- Opcode assignments for instructions implied by the above

It may be that multiple standard documents capture different
aspects of the work – e.g., a baseline spatial memory-safety
specification, an extension for domain transition, and an
extension for temporal memory safety. Specific function
software objectives include the implementation of:

- Safe use of an entirely unmodified RV32/64 software stack

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

https://github.com/CTSRD-CHERI/cheri-specification/tags
https://github.com/CTSRD-CHERI/cheri-specification
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html


- CHERI RV32/64 firmware hosting RV32/64 or CHERI
RV32/64 kernel

- CHERI RV32/64 kernel hosting RV32/64 or CHERI
RV32/64 userlevel

“CHERI RV32/64” above does not imply “pure-capability” or
“hybrid” language or code generation/linkage models – just
the use of CHERI-aware ISA features. Software stacks might
be compiled as conventional RV64 machine code using inline
assembly for CHERI-related functions, employ the CHERI
Hybrid C/C++ model to achieve similar goals but with
stronger language and toolchain support, or use capabilities
ubiquitously for pure-capability CHERI C/C++ and code
generation. ABI specification activities will also aim to
support all of these use cases.

We will aim to converge to the greatest extent possible with a
potential concurrent effort to standardize CHERI
microcontroller support – e.g., by considering similar encoding
choices for capability permissions, instruction selections, and
so on.

CHERI aspects to initially deferred

Some aspects of CHERI remain areas of active research, with
architectural and microarchitectural prototypes but not yet
substantial software ecosystem experience. As these mature
alongside standardization efforts, they may be included in an
eventual standard but are not committed to at this point in our
work:

- Sealed capability pairs with object types

- Relocating / offsetting PCC (Program Counter Capability)
and DDC (Default Data Capability) – initially PCC/DDC will
only perform bounds & permission checks.

- Specialist capability conversion instructions (CFromPtr and
CToPtr) used to optimize certain types of pointer manipulation
in Hybrid C; these are likely to be deprecated in CHERI

- MMU support for page capability-dirty tracking

- MMU support for load-barrier temporal memory safety

- Morello-specific domain-transition mechanisms such as
executive/restricted modes and indirect sealed jumps

- Local-global mechanisms

- One vs. multiple capability roots and formats; as the
proposed standardization effort would introduce only memory
capabilities, this design aspect can be deferred

- The final bit layout of a capability’s non-address word

- The use of DRAM metadata / ECC bit-stealing or CHERI tag
cache/controllers

- As-user CHERI memory instructions

Known CHERI issues to resolve before /
during standardization

Before completing standardization, there a number of known
(sometimes minor) issues to resolve:

- Current opcode assignments are from the local extensions
space, and this will need to change

- The CSR model needs refinement or replacement

- Whether and how to bank DDC

- The Access_System_Registers (ASR) permission may not be
sufficient, especially if there are notions of privileges that it
controls in more than one ring. This can lead to
confused-deputy problems between rings if ASR needs to be
assigned to less privileged rings

- There hasn’t been a proper quantitative
measurement/analysis/optimization cycle on the instruction
encodings, including compressed encodings

- There hasn’t been a co-designed optimization cycle between
the ISA and ABI

- Tune bounds precision

- How many “reserved bits” can reasonably be set aside at this
point in standardization in order to enable future extensions –
e.g., for otypes (CHERI object types, used in some forms of
domain transition) – and what those extensions might require

Projected performance overhead

Early performance analysis by the University of
Cambridge shows promise. Code generation
improvements are ongoing and we will present an update
on the current state of performance evaluation in the
presentation.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023


