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Abstract

Trigonometric functions are used in many embedded systems applications, such as signal and image processing,
control theory, communication systems and robotics. Taking the advantage of RISC-V ISA flexibility and
Codasip processor design technologies, we propose a fast and efficient implementation of the CORDIC
algorithm implemented as custom instruction in an embedded RV3I2IMCB core in order to smoothly compute
trigonometric functions. This customization improves the performance reducing the processing time by 24x,
energy consumption by 13.5x at the cost of an additional 4% of silicon area. The CORDIC accelerator was
implemented with 210 lines of CodAL code. Such a compact implementation alongside an automatically
generated toolchain significantly shortening the time to ASIP market facilitating IP core customizations.

Introduction

Trigonometric functions are used in embedded systems
for a wide variety of signal and image processing
applications, motor and power control, PWM generation
[1], digital communication systems and robotics.

Embedded devices are typically resource-constrained,
making it difficult to efficiently run many complex
mathematical algorithms. Several methodologies exist to
compute trigonometric functions, implemented either with
purely software, or hardware or mixed solutions. The
fastest trigonometric computation can be obtained by using
look-up tables, but they require a huge memory space and
corresponding area. In this scenario, the CORDIC
algorithm, a hardware-efficient iterative method [2],
provides a promising trade-off, since it allows computation
of trigonometric primitives with no multiplications, no FPU
and with relatively small additional resources. In addition,
the CORDIC algorithm computes both sine and cosine
values at the same time.

The CORDIC algorithm is based on an iterative input
angle rotation by some specific values accompanied by
(x,y) coordinate transformation to get closer and finally
target the corresponding sine and cosine values. These
transformations do not require multipliers by properly
choosing the rotation angle values. It should be noted that
the CORDIC algorithm requires an input angle and
provides sine and cosine output values in fixed-point
representation, so the conversion is required if one starts
from floating-point representation. These conversions can
be done with either hardware or software means, in our
approach, they are implemented by software.

Methodology

This paper shows how the high-level synthesis tools and
LLVM-based automated compiler generation simplify
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embedded processor customization from a software and
hardware points of view. The design flow starts from the
Codasip L31 RISC-V 32-bit core with 3 pipeline stages,
which is extended with the CORDIC accelerator tightly
coupled to a processor pipeline:

Fetch unit — —{ Decoder '—

The CORDIC module resides at the EX stage and is
enabled by a single custom instruction {“cordic” dst ","
src} that takes the input angle encoded in 32-bits from the
“src” register and computes the cosine and sine values.
They are represented in fixed-point 16-bits format and
concatenated in a single output “dst” register.

The proposed CORDIC implementation is based on a
16-bits architecture that requires 16 iterations to get the
result: the input angle is rotated 16 times before getting the
corresponding sine and cosine values. Each iteration takes
one core clock cycle that allows one to shorten CORDIC
execution path and minimize the effect on the core critical
paths and its maximum working frequency. During the
computation CORDIC module stalls the processor pipeline
until the result is obtained after 16 cycles.

The accuracy analysis showed that this solution
introduces only an additional 10 error in the sine and
cosine results, compared with the results obtained by
software means with the usage of the “math.h” library.

The processor and CORDIC module are described in
CodAL, which is a high-level architectural description
language specific for processors that reduces the code



volume to about 40% compared to conventional HDLs.
Moreover, it simplifies customization by automated
toolchain generation that supports new instructions and
contains LLVM compiler, linker, debugger as well as a
cycle-accurate simulator.

CodAL has a C/C++-like syntax and can handle many C
constructs in a way that is familiar to software engineers,
however the resultant CodAL model can be converted to
RTL so that the ultimate design could be synthesized and
instantiated in silicon.

The definition of custom instruction in CodAL takes the
form of an “element” with the following 3 sections:

e  Assembly section captures the instruction syntax

® Binary section maps the opcodes, registers and

immediate values to 32 or 64 bits

e  Semantics section describes the instruction behavior

CodAL description of “cordic” instruction that enables
the CORDIC module and starts the iterative “sin” and
“cos” values calculation is given below:
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element i_cordic {

assembly { “cordic” dst"," src };
binary { 0:bit[12] src opc dst OPC_CORDIC};
semantics {
angle =rf gpr read(src);
cos=1;
sin = 0;
for (shift=0; shift < ITERATIONS; shift++) {
if (angle<0) {
cos += sin >>> shift;
sin -= cos >>> shift;
angle += tan[shift];
} else {
cos -= sin >>> shift;
sin += cos >>> shift;
angle -= tan[shift];
H

rf gpr write(dst, (cos :: sin));
}5
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The semantics section comprises all actions that
instruction is responsible for. First, the 32-bit “angle” value
is taken from the input register “src”. The iterative rotations
are described within a “for-loop” where (cos, sin) are
transformed using only addition and shift arithmetic
operations, while the “angle” is incremented or
decremented by “tan” values taken from the lookup table.
Ultimately two 16-bit (cos, sin) values are written to the
upper- and lower- half of the 32-bit output register.

PPA improvement

Adding CORDIC accelerator and custom instruction to
control it led to a custom L31 core with better performance
and total energy consumption than the standard L31. The
PPA results comparison is given on diagram below, they

were obtained with cycle-accurate profiling of the same
trigonometric task on standard and customized L31 models:
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Codasip L31 core (RV32MCB) + CORDIC accelerator

To estimate maximum operation frequency, both the
standard Codasip L31 and customized core designs were
synthesized using Genus EDA tools for the TSMC 28nm
tech node in multi-mode multi-corner (mmmc) flow for a
range of target frequency from 50 to 650 MHz. For both
designs the timing conditions were met up to 650 MHz, and
the linearity of dynamic power dependence on frequency
was preserved. That means customization and CORDIC
accelerator did not affect maximal core frequency. The
summary of the L31 core customization is given below:

Table 1: Codasip L31 with CORDIC accelerator.

TSMC 28nm L31 CORDIC
Area, a.u. 100% 104%
Performance 1x 24.3x
Energy

consumption 100% 7.4%

Lines of code 210(CodAL) vs 600(Verilog)

The customization improves the performance lowering
the processing time by 24x, energy consumption by 13.5x
at the cost of additional 4% of silicon area. The
compactness of CodAL language with respect to other
HDLs helped to significantly reduce the design effort.
CORDIC accelerator fits 210 lines of CodAL code written
with the 1 person-week effort. The same module will
require ~600 lines of Verilog code. Taking a compact
implementation and an automatically generated toolchain
altogether allows one to significantly shorten the way to the
ASIP market and simplify IP core customization.
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