
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Multi-ISA Firmware Compatibility – Bringing RISC-V and
IHV Ecosystems Together

Andrei Warkentin

Intel Corporation

Abstract

There are a number of challenges to a successful standards-based RISC-V ecosystem that enables PC and
server-like designs. One important challenge is interoperability with the existing IHV device ecosystem. How
can we bring familiar off-the-shelf PCIe devices, such as graphics, network, and storage adapters, to UEFI
RISC-V systems with the same pre-boot experience seen on Intel 64 and SystemReady AArch64 platforms?
This paper covers an emulation-based approach and presents MultiArchUefiPkg – an open-source solution.

Introduction

The open-source nature of RISC-V has paved the way
for many companies to collaborate and define core
technologies, while building products with unique
differentiation and market focus. This has led to a vibrant
competitive landscape that has seen RISC-V based
technologies pushing into segments dominated by Arm
and x64-based incumbents much faster than could have
been anticipated. With less than a decade since the
formation of RISC-V International, RISC-V based PCs,
servers and mobile products don’t seem too far off.
Reinforced by an interest in sovereign compute and
growing cloud provider appetites, RISC-V stands to
benefit greatly from the ongoing « heterogenization » of
standards-based infrastructure seen with the introduction
of Arm SystemReady-compliant systems and their
adoption since 2018.

After many false starts since the 90’s, the Arm
SystemReady ecosystem was the first to prove the benefits
of a PC-like approach, rooted in multiple vendor
interoperability and adoption of existing standards.
Familiar hardware and firmware choices minimize friction
with adopters, integrators, and implementers. This mantra
of “boring hardware” lead to a set of hardware and
firmware specs that distilled the x641 ecosystem,
decoupling it from historical ISA-specific legacy. While
early Arm server designs coupled custom I/O along inside
the SoC, partially to differentiate and partially to
compensate for weak compute offerings, subsequent wins
focused on CPU, memory and PCIe performance, leaving
I/O capabilities to pluggable devices. Thus,
interoperability with current off-the-shelf PCIe devices
remained critical – storage adapters, network controllers,
GPUs, etc.

Efforts to define a standards-based RISC-V ecosystem
are ongoing. Much of this work may follow in the
SystemReady footsteps, building upon a decade of twists
and turns of abstracting PC standards away from Intel
Architecture. For example, the OS-A-SEE Task Group is
currently working on the Booting and Runtime Services

164-bit x86, aka x86-64, AMD64, IA-32e, EM64T, Intel

64

Specification (BRS). For interoperable designs such as
servers and PCs, the BRS embraces UEFI and ACPI
firmware, much like the x64 PC and Arm SystemReady
ecosystems. Interoperable hardware is yet to be defined,
yet interoperability with existing IHV products is equally
important given the market segments such standards
enable. How can a non-x64 system make use of hardware
manufactured for x64 systems? Sure, the plug-in devices
are all PCIe and the default server OS – Linux - is likely
to have working vendor drivers, yet what about the UEFI
firmware itself?

PCIe devices and UEFI

Let’s assume a typical x64-based PC with a PCIe GPU.
What happens when the power switch is flipped? First, the
CPU boots a UEFI firmware implementation. This is a
rather advanced environment, more of a minimal OS than
a ROM monitor. UEFI’s sole function is to initialize the
minimal set of hardware to boot an OS. UEFI achieves this
with, among other things, a rich device driver model with
full support for plug-in PCIe adapters. PCIe busses are
enumerated, with devices identified and resources
configured. After this step every PCIe adapter has a
“device handle” created, allowing the device to be
discovered for the purpose of binding UEFI drivers to it.
Drivers are either part of system firmware (e.g. standard
stuff like xHCI and NVMe), or come from the adapters
themselves. A driver bundle is read from the PCIe device
ROM and can have multiple drivers. E.g, a video card
could have an x64 UEFI driver, a legacy BIOS driver, etc.
The x64 UEFI implementation will look for a x64 driver.
If no supported drivers exist, the device cannot be used
inside UEFI. What about a RISCV64 system? The card
does not have a RISCV64 driver, so no driver would be
loaded.

UEFI solved this exact problem two decades ago via EFI
Byte Code. This was an abstract VM that PCI Option
ROM drivers could be compiled for, that would guarantee
interoperability regardless of ISA. Unfortunately, the tech
was too early for its time. Itanium, where EFI made its first
splash, had no interoperability concerns with BIOS-

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

booting PCs. When UEFI finally reached x64 PCs, no
interoperability concerns existed either – legacy hardware
could be supported by booting PCs in BIOS compatibility
mode. It couldn’t have helped that the only C compiler for
EBC was a Windows-only commercial product. IHVs
ignored EBC. EBC ran via an interpreter, so there were
clear performance/qualification differences involved as
well. By the time the Arm SystemReady ecosystem
needed a solution, EBC wasn’t it.

Support via Binary Translation

In 2017 Suse and Linaro engineers Alexander Graf and
Ard Biesheuvel unveiled2 X86EmulatorPkg – an open-
source UEFI driver that ran x64 UEFI drivers on Arm.
X86EmulatorPkg uses a binary translator from Qemu
(TCG). X86EmulatorPkg models an x64 UEFI boot
service environment, providing native services to x64
UEFI binaries, and vice versa. Thus, a graphics driver can
provide the interface to draw to a framebuffer, and a NIC
driver an interface to send and receive packets. This is
possible without special-casing individual services and
interfaces because UEFI exercises a quite narrow subset of
an ABI: parameters are passed via integer registers, and
the return values always fit within a single 64-bit register.
Seamless transition from native to emulated code is
achieved by mapping the x64 as non-executable, with the
page protection trap handler redirecting execution to the
BT engine. Transition from emulated to native code is
done by comparing the branch target instruction pointer
against known ranges of emulated images, performing
native jumps instead of going through the BT layer. For
driver I/O, x64 port I/O instructions are mapped to UEFI
PCI I/O operations, but very little else is done with respect
to defining a minimal well-defined x64 UEFI Boot Service
environment. In practice, X86EmulatorPkg does a great
job of supporting current GPUs and NICs on real
production Arm servers.

MultiArchUefiPkg for RISC-V

An effort to bring-up X86EmulatorPkg on RISCV64

started in late 2022, as part of creating more realistic and
useful reference RISC-V platforms to demonstrate the
value of interoperable standards. In April 2023, the
resulting work had been released as open source to the
general community for further collaboration as
MultiArchUefiPkg3. Like X86EmulatorPkg,
MultiArchUefiPkg models a foreign ISA UEFI boot
service environment, fit for running well-written UEFI
applications and device drivers.

X86EmulatorPkg is very tightly coupled to portions of
Qemu TCG code, which at the time had no RISC-V
support, and which were difficult to identify as belonging
to any specific version to help with a possible rebase to
newer Qemu bits. Instead, a decision was made to rewrite
X86EmulatorPkg using the Unicorn Engine, which is an
open-source CPU emulator library also based on Qemu.

2http://events17.linuxfoundation.org/sites/events/files/slid

es/QEMU%20in%20UEFI.pdf
3 https://github.com/intel/MultiArchUefiPkg

The full rewrite, known as MultiArchUefiPkg. decouples
the UEFI emulation driver from the CPU emulation library
using well-defined API. The net result has competitive
performance, portability, support for multiple emulated
ISAs (x64 and AArch64 on RISCV64), size (2/3 the binary
size on AArch64 compared to X86EmulatorPkg) and
improved correctness in modeling the emulated
environment, such as handling of native LongJumps,
image exits and self-modifying code. A regression test
application exists for basic smoke testing of changes.
Integration with Unicorn Engine itself brought some
challenges. The libraries had to be ported to the UEFI
environment, and several fixes were necessary for
correctness and performance. The modified Unicorn
Engine sources are also released4 with intent to upstream.

Architecture-specific differences between AArch64 and
RISC-V support are minor, mostly adding code to recover
the x64 RIP from the exception program counter (SEPC)
and writing the assembler level shim to convert exception
state to CPU emulator call arguments.

The project has been a great test for RISC-V UEFI
implementations readiness and spec bindings. For
example, bugs in the UEFI RISC-V timer driver and
exception handling code were fixed and contributed back,
and various gaps are yet to be addressed via UEFI spec
ECRs. More crucially, existing RISC-V UEFI
implementations were found to have no support for MMU
page protection. An MMU support patch set from Ventana
Micro Systems should be merged soon, but as a stop-gap
this prompted some further innovation around the use of
native EFI wrappers around emulated image entry points.

Future

Binary translation is a great tactical solution to bring the
existing IHV ecosystem to RISC-V, but long term it’s not
a great solution without further efforts to narrow down the
subset of allowed behaviors in the emulated code, perhaps
via a custom toolchain. For example, the use of newer ISA
extensions in code (some new revision to SSE, perhaps)
would mean more changes and complexity. Even today,
for example, some EFI applications don’t run, expecting
support for invariant RDTSC instead of using UEFI
services. On the other hand, expecting IHVs to bundle
multiple ISA support doesn’t seem like a great strategy
either with at least 4 modern 64-bit architectures with
UEFI support now in the wild, and 128-bit ISAs around
the corner. Another approach could be to resurrect EBC,
addressing tooling and performance concerns, or to
investigate something similar yet more modern like
WebAssembly.

4 https://github.com/intel/unicorn-for-efi

