
We had 64-bit, yes. What about second 64-bit?
Mathieu Bacou1, Adam Chader1, Chandana Deshpande2, Christian Fabre3, César Fuguet3,

Pierre Michaud4, Arthur Perais2, Frédéric Pétrot2, Gaël Thomas1, Eduardo Tomasi2,3∗

1Télécom SudParis 2Univ. Grenoble Alpes, CNRS, Grenoble INP†, TIMA 3Univ. Grenoble Alpes, CEA, List 4Inria, Univ Rennes, CNRS, IRISA

Abstract

High-performance architectures are increasingly heterogeneous and incorporate often specialized hardware. We have first
seen the generalization of GPUs in the most powerful machines, followed by FPGAs, and now by many other accelerators such
as Tensor Processor Units (TPUs) for Deep Neural Networks, or variable precision FPUs. Recent hardware manufacturing
trends make it very likely that specialization will not only persist, but increase. Manually managing this heterogeneity is
complex and not maintainable. We therefore propose to revisit how we design both hardware and OS in order to better hide
the heterogeneity. To ensure long term viability of our proposal, we propose to entertain the use of 128-bit addressing.

1 Introduction & Motivation
Cloud and high-performance infrastructures have evolved
to become distributed and heterogeneous systems: one
machine now includes several CPU sockets interconnected
to multiple memory banks through complex Non-Uniform
Memory Access (NUMA) networks; and each socket is
itself a complex system with an integrated network-on-chip
interconnecting the cores and many levels of caches. In
addition, the storage system is a complex stack of layers with
variable performance characteristics and features. To top it
all off, each computer contains heterogeneous accelerators
dedicated to specificworkloads: GPUs, FPGAs, SmartNICs,
TPUs, Variable Precision (VRP) FPUs, etc.

Meanwhile, the software system part remains a stack of
competing layers, each based on tweaked generic heuris-
tics and concepts, that try to manage the same hardware
resources and system objects. For example, data-centers
use a virtualization stack made of a Linux kernel-based
virtual machine (VM), on top of a QEMU/KVM (Linux
kernel)-based hypervisor, all in an attempt to handle the
distribution and the heterogeneity. To handle the hardware
and software diversity, Linux has grown to 20 millions lines
of code ; and despite this large code base, the kernel does
not provide adequate abstractions for modern hardware.
As a result, many libraries turn to bypassing the operating
system (OS), for performance reasons and to provide more
adequate abstractions to the users. We came to the conclu-
sion that the situation is not sustainable in the long term,
so we propose to explore the redesign of the OS and of its
hardware support in light of modern devices and concepts.

Our redesign is best illustrated by the following example:
in the context of a Deep Neural Network (DNN) application,
a learning process must: 1. load training data from disk to
central memory, directed by the CPU; 2. load training data
from central memory to GPU memory for model learning,
directed by the CPU; 3. load learned model from GPU
∗Alphabetical order. This work is funded by ANR project Maplurinum.
Corresponding author: arthur.perais@univ-grenoble-alpes.fr
†Institute of Engineering Univ. Grenoble Alpes

memory to central memory, directed by the CPU; 4. load
trained model from central memory to network card queues
for model distribution, directed by the CPU.
In this scenario, the CPU is always involved to control

the data movements, despite never being useful to the
actual process taking place; and there are two indirect data
movements. This is explained by the heterogeneity of the
devices and accelerators and by their non integration into a
disaggregated system with a unified memory space.
By contrast, we want to achieve the following scenario:

1. load training data from disk to GPU memory for model
learning, directed by the GPU; 2. load learned model from
GPUmemory to network card queues for model distribution,
directed by the GPU. The first step is to unify the hardware,
and the second is to revisit how it is exposed by the OS.
The unification of the hardware stands on two pillars:

a common minimal instruction set, and a unified address
space. The common minimal instruction set is made possi-
ble by risc-v and its ability to support different extensions
in different cores. The unified address space is a straight-
forward idea: to expose any device (from general purpose
processors to specialized processing units, through memory
banks and NICs, etc.) in the virtual address space of the
process. Towards that endeavor, we propose the use of
128-bit virtual addresses associated with machine-wide
cache-coherency protocols such as CXL [1].

Based on the unification of the hardware, we propose to
revisit the design of the OS to handle the distribution and
heterogeneity of the machine to expose its resources to the
processes. A multi-kernel design allows to distributed the
OS, where devices run satellite kernels collaborating with
each other to execute processes. Then, we want to hide the
heterogeneity of the devices’ interfaces by generalizing the
kernel bypass approach. By leveraging the unified 128-bit
address space, we install the OS as a controller that grants
access to hardware resources to its processes by exposing
the devices directly in their address spaces.

To achieve our collaborative hardware-software redesign
through 128-bit addressing, we will tackle the following
challenges: i) Tame the performance penalty induced by

RISC-V Summit Europe, Barcelona, 5–9th June 2023 1

mailto:arthur.perais@univ-grenoble-alpes.fr


the transition to 128-bit; ii) Implement efficient, scalable
hardware communication primitives through the unified
address space; iii) Build the satellite multi-kernel as an effi-
cient control plane; iv) Design kernel-to-process interfaces
to provide a performing data plane.

2 Hardware Perspective
Unifying the address space is a good opportunity to also
consider 128-bit addresses, as it is bound to put additional
pressure on address availability. However, the impacts of
doing so on hardware must be considered.

Efficient 128-bit Microarchitecture Naively doubling
the width of datapaths, registers and functional units will
incur power, area and latency overheads. Combined to
the doubled footprint of pointers in memory, the transition
to 128-bit is likely to undermine performance rather than
improve it, at least from the processor perspective. Our
intuition is that most 128-bit computation will be address
calculation rather than "regular" integer arithmetic. There-
fore, we envision a clustered microarchitecture with a 64-bit
cluster where 32- and 64-bit integer arithmetic will be
performed, and a 128-bit cluster where address calculation
and 128-bit arithmetic will be performed. This divide &
conquer approach will allow to expose full 128-bit support
to software while paying for the wider datapath only in
part of the processor backend. A key difficulty will be to
steer 32- and 64-bit instructions to the 128-bit cluster if
they do participate in address calculation, as inter-cluster
communication generally incurs latency [2].

Memory Hierarchy Dealing with the NUMA effects is
one of the most important challenges with 128-bit ad-
dressable space. Indeed, highly heterogeneous supercom-
puters and datacenters will implement multi-level cache-
hierarchies with multiple distributed memory banks at the
chip level to increase memory bandwidth. These memory
banks are physically distributed but logically shared, that is,
any device in the system can access anymemory bank. How-
ever, the access latency depends on the physical distance
between the device and the target memory bank, which is
exacerbated with multi-socket and multi-board systems. A
possible solution for reducing NUMA effects is to place
code and data near the device that uses them. However,
correctly placing memory objects is hard when code and
data memory objects are shared by multiple devices that
are physically far from each other. The multi-kernel OS can
replicate code and data segments and put copies near the
devices. This leads to yet another issue: the management
of the copies. Data coherency and consistency must be
guaranteed in case of multi-write and multi-read data. For
example, CXL protocols ensure cache coherency between
a machine’s devices, enabling extremely efficient direct
accesses to memory-mapped registers. We envision OS-
driven hardware mechanisms to ease both the replication

and management of copies, for example by allowing the OS
to dynamically define the cache coherency between devices.

3 Software & System Perspective
The operating system needs a redesign to handle the chal-
lenges of heterogeneity and disaggregation of the rack.
We aim at solving this challenge by redesigning the OS

as a multi-kernel, centered around a unified address space.
The redesign is supported first by risc-v as a common
minimal instruction set, and second but most importantly
by a 128-bit unified address space [3].

Multi-kernel Amulti-kernel is a distributed system: each
processing unit runs a kernel, and they collaborate to execute
processes that run on the different units. Multi-kernels have
already been proposed [4, 5], but they only took into account
plain homogeneous CPUs. They also limited themselves to
one communication paradigm via message passing.
To counter this, we propose to revisit the concept of

satellites: each heterogeneous device and accelerator is
equipped with an optimized CPU solely dedicated to the
operations of the control plane. By doing so, devices
and accelerators can be seen as homogeneous processing
units: they become active in the disaggregated system. The
commonminimal instruction set and hardware virtualization
will help in implementing satellite kernels that communicate
efficiently via a unified 128-bits address space.

Unified address space In the context of a disaggregated
rack, the multi-kernel is a controller that grants access to
different hardware resources to user tasks. We want to
revisit the classic kernel interfaces and abstractions around
the idea of direct access to the data plane, i.e., the memory.
Indeed, all satellites will give out grants for other satellites
to directly map some control structure and data buffers into
their memory. This design is in line with the bypassing of
the control plane in favor of optimizing data plane-related
operations. This is also a way to homogenize the low-level
interfaces of the kernel, all through a unified address space.

References
[1] CXL Consortium. Compute Express Link: The Breakthrough CPU-

to-Device Interconnect. https://www.computeexpresslink.
org/ (visited: 2023-03-17). 2020.

[2] Richard E Kessler. “The alpha 21264 microprocessor”. In: IEEE
micro 19.2 (1999), pp. 24–36.

[3] Andrew Waterman et al. The RISC-V instruction set manual, volume
I: User-level ISA, Version 2.0. Tech. rep. https://github.com/
riscv/riscv- isa- manual/releases/tag/isa- 449cd0c.
2023, pp. 49–50.

[4] Andrew Baumann et al. “The Multikernel: A New OS Architecture
for ScalableMulticore Systems”. In: Proc. of the Symp. on Operating
Systems Principles, pp. 29–44.

[5] Edmund B. Nightingale et al. “Helios: Heterogeneous Multiprocess-
ing with Satellite Kernels”. In: Proc. of the Symp. on Operating
Systems Principles, pp. 221–234.

2 RISC-V Summit Europe, Barcelona, 5–9th June 2023

https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://github.com/riscv/riscv-isa-manual/releases/tag/isa-449cd0c
https://github.com/riscv/riscv-isa-manual/releases/tag/isa-449cd0c

	Introduction & Motivation
	Hardware Perspective
	Efficient 128-bit Microarchitecture
	Memory Hierarchy


	Software & System Perspective
	Multi-kernel
	Unified address space



