
Low-latency user-level communication for RISC-V
clusters

Charisios Loukas1∗, Pantelis Xirouchakis1, Michalis Gianioudis1,
Aggelos Ioannou1,2, Manolis Katevenis1 and Nikos Chrysos1

1Computer Architecture and VLSI Systems laboratory, Foundation for Reasearch and Technology - Hellas
2Lawrence Berkeley National Laboratory, University of California

Abstract

Within the context of the RED-SEA project, we integrate novel low-cost interconnect technologies with open-
source low-power, RISC-V processors. We present and measure a design that achieves sub-microsecond user-level
latency on small packet generation and transmission between adjacent RISC-V cluster nodes.

Introduction

Low-latency inter-node communication is important in
HPC clusters. Following the conclusion of the ExaN-
eSt[1] project, which studied the adoption of low-cost,
power-efficient ARM processor clusters for Exascale-
class systems, as part of the RED-SEA project, we
swap the ARM processors for RISC-V. In this work1,
we tightly couple a lean, low-latency network interface
with a modified Ariane RISC-V soft core.

Methodology

Architecture The system used for the measure-
ments consists of 2 TE0808 Trenz boards (with the op-
tion of adding more), each hosting a Xilinx XCZU9EG
MPSoC and connected in a ring node topology, us-
ing 10Gbps transceivers. The design programmed on
each node includes an Ariane RISC-V core, running
Linux at 100 MHz. The core, as seen in Figure 1, is
connected via AXI4 to a Packetizer and a Mailbox
module[2], by means of a custom load/store interface
that is tightly integrated into the core. This interface
consumes specific ld/st operations at pipeline speed,
and hands them to the AXI. It issues early acknowl-
edgements, allowing back-to-back store instructions,
so that transfer descriptors are efficiently produced.

Both the packetizer and the mailbox are peripher-
als of the custom HPC interconnect, named caRVnet.
The caRVnet Packetizer is a virtualized peripheral
that accepts descriptors for small transfers from the
Ariane core and outputs small caRVnet packets, which
may target local or remote mailboxes. The caRVnet
Virtualized Mailbox implements multiple FIFOs, us-
ing FPGA BRAMs, in order to enqueue the incoming
payload of packets. It receives packets of a predefined

∗Corresponding author: cloukas@ics.forth.gr
1 This work is part of RED-SEA project (grant No. 955776)

part of the EU HPC JU, funded by the EU H2020 programme.

Figure 1: Node architecture

maximum size from the caRVnet packetizer, which
can then be dequeued by the Ariane core using load
commands. To allow use of the packetizer-mailbox
hardware in user space, a user space library and a set
of hardware drivers were implemented.

Measurement Software Latency between adjacent
nodes is measured in one of the two nodes by a user
space program which implements a ping-pong test.
Each node sends a 32 byte message to a remote mail-
box and waits for a response. This happens repeat-
edly, with time measured using the RISC-V timers, by
means of the rdcycle assembly command, which only
costs a minimal 2 Clock Cycles overhead per iteration.
Instead of measuring the time of multiple iterations,

Figure 2: Per iteration one-way latency measurements
with and without interrupts

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:cloukas@ics.forth.gr


Figure 3: Breakdown of two-way user level latency.

we opted to measure and record the time of each itera-
tion individually, in order to avoid loop overheads and
study the delay variance across different iterations.

Results

Latency Measurements Running the measurement
software initially returned an average round-trip la-
tency of 1.86µs. This corresponds to an one-way la-
tency of 0.93µs, which is already a satisfactory result,
considering that the processor is running at 100 MHz.

On the left part of Figure 2, we depict the latency
of individual iterations. As can be seen, the latency
varies significantly, between 720ns and 500µs. We no-
tice a concentration of values in 4 main plateaus. The
overwhelming majority of the measurements is concen-
trated at 720ns. Occasionally the latency climbs up to
2000ns or even 500µs. We determined that this hap-
pens due to context switches, occurring in either of the
two nodes. To cross-validate this result, we developed
a hardware mechanism, which allows us to disable
interrupts during measurements. The results can be
seen in the right part of Figure 2, where latency does
not exceed 1000ns. The average one-way latency
is 725ns, with the majority of measurements at 720ns.
A few reach up to 1000ns due to page walks, that occur
while accessing the array which stores latency values.

Measurement breakdown Figure 3 breaks down
the latency, based on hardware signals captured with
Vivado Chipscope. The sequence of events is as follows:

1. 0 CCs: Data starts being written in the packe-
tizer memory on node 0.

2. 7 CCs: Packet formation has been triggered and
a header valid signal is active on the network.

3. 22 CCs: The polling of the mailbox on node 0
has begun, with a polling period of 5 CCs.

4. 47 CCs: Node 0 receives packet acknowledge-
ment, 40 CCs after the packet was sent, indicating
a 20 CC network traverse time.

5. 99 CCs: The response packet header arrives
in node 0, indicating the node 1 packetizer was
triggered at 79 CCs (20 CCs network traverse).

6. 107 CCs: The mailbox is polled in an active state
4 to 8 CCs after the header arrives, depending on
time of arrival.

7. 129 CCs: The last data of the response packet
has been read.

8. 144 CCs: The next packet begins being written
on the Node 0 packetizer memory.

In total, we have 42 CCs software and 10 CCs of
hardware overhead and a 200ns one-way network tra-
verse, giving us the 720ns one-way latency.

Conclusion

In this paper we demonstrated the opportunities for
low latency communication between RISC-V nodes,
Our FPGA-based results suggest that this system,
developed on ASIC with a 1 GHz clock can achieve
one-way latency of 340ns.

References

[1] Manolis Katevenis et al. “Next Generation of Exascale-class
Systems: ExaNeSt project and the status of its intercon-
nect and storage development”. In: Microprocessors and
Microsystems 61 (May 2018). doi: 10.1016/j.micpro.
2018.05.009.

[2] Manolis Ploumidis et al. “Software and Hardware co-design
for low-power HPC platforms”. In: High Performance Com-
puting: ISC High Performance 2019 International Work-
shops, Frankfurt, Germany, June 16-20, 2019, Revised
Selected Papers 34. Springer. 2019, pp. 88–100.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://doi.org/10.1016/j.micpro.2018.05.009
https://doi.org/10.1016/j.micpro.2018.05.009

	Introduction
	Methodology
	Architecture
	Measurement Software


	Results
	Latency Measurements
	Measurement breakdown


	Conclusion

