
PERCIVAL: Integrating Posit and Quire
Arithmetic into the RISC-V Ecosystem
David Mallasén, Raul Murillo, Alberto A. Del Barrio,
Guillermo Botella, Luis Piñuel, and Manuel Prieto-Matias
Corresponding: dmallasen@ucm.es
Facultad de Informática,
Universidad Complutense de Madrid, Spain

github.com/artecs-group/PERCIVAL

Abstract

Posit arithmetic [1] is an alternative to IEEE 754 standard floating-point [2] that
presents promising properties in areas such as high-performance computing or artifi-
cial intelligence. The open-source PERCIVAL [4] posit RISC-V core integrates posit
arithmetic and quire capabilities into hardware. In addition, Xposit, a RISC-V custom
extension for posit operations allows for the compilation of C programs with inline as-
sembly posit and quire instructions. PERCIVAL is based on the application-level CVA6
core developed by the PULP Platform and maintained by the OpenHW Group. As a
study platform, it has support for both posit and IEEE 754 formats, further permitting
the comparison of these arithmetic representations.

Posit Arithmetic

The posit number format defines a posit configuration from its total bit-width n. One
of the main benefits of posit arithmetic is that they have only two special cases. The
value zero and the Not-a-Real (NaR). The rest of the values are composed of four fields:
Sign bit, variable-length regime, 2 exponent bits, and variable-length fraction field.

From these fields we can calculate the real value p of a generic posit as:

p = ((1− 3s) + f )× 2(1−2s)×(4r+e+s).

Posit arithmetic also includes fused operations using the quire, a 16n-bit fixed-point
2’s complement register. This special accumulation register allows for the execution of
up to 231 − 1 Multiply-Accumulate (MAC) operations without intermediate rounding or
accuracy loss. These operations are very common when computing dot products, matrix
multiplications, or other more complex algorithms.

PERCIVAL

PERCIVAL [4] is a RISC-V core based on the application-level CVA6 core (ex.
PULP’s Ariane [5]). The main objective has been to maintain the compatibility between
the IEEE 754 floating-point operations and the new functionality.

The Posit Arithmetic Unit (PAU) consists of the posit arithmetic and conversion
modules, the quire operations, and a top-level module that orchestrates the execution
of the instructions. This top-level module uses a synchronous handshake interface to
transfer the data and read the control signals.

Xposit is a custom RISC-V extension that adds posit and quire instructions as well
as a posit register file. It has been integrated into LLVM to allow the compilation of C
programs together with inline assembly for the new instructions. The posit instruction
set mimics the structure of the F RISC-V standard extension, adapting it to this novel
arithmetic.

inst[4:2] 000 001 010 011 100 101 110 111
inst[6:5] (> 32b)

00 LOAD LOAD-FP XPOSIT MISC-MEM OP-IMM AUIPC OP-IMM-32 48b
01 STORE STORE-FP custom-1 AMO OP LUI OP-32 64b
10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/rv128 48b
11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv128 ≥ 80b

Synthesis Results

Synthesis results of PERCIVAL provide some insight into the total hardware cost
of a posit- and quire-enabled CPU. Furthermore, we can compare the resource usage
of posits in contrast to IEEE floats. Synthesis was executed on Vivado v.2020.2 for a
Xilinx Kintex-7 FPGA with a target frequency of 50MHz (set by the CVA6 core).

32-bit LUTs FFs DSP blocks

FPU 4046 973 2
PAU 11879 2985 4

When comparing the PAU with quire with the
Floating-Point Unit (FPU), the PAU requires around 3
times more resources. However, the quire MAC occu-
pies 50% of the area. If we do not include the quire, we
follow the results from previous works which reported
an increase of around 30-35% more resources when us-
ing posit arithmetic when compared to IEEE floats.

• Quire MAC uses ∼50% of the area

• Posit32 without quire: ∼33% more area than FP

Name LUTs FFs

PAU top 593 1063
Posit Add 784 106
Posit Mult 736 73
Posit ADiv 413 43
Posit ASqrt 426 33
Quire MAC 5644 1541
Quire to Posit 889 126
Int to Posit 176 0
Long to Posit 331 0
ULong to Posit 425 0
Posit to Int 499 0
Posit to Long 379 0
Posit to UInt 228 0
Posit to ULong 358 0

PAU total 11879 2985
PAU w/o quire 5346 1318

Benchmarks

The General Matrix Multiplication (GEMM) showcases the accuracy benefits of us-
ing posit arithmetic. The results obtained using 64-bit doubles are used to compute the
Mean Squared Error (MSE) of posit32 and 32-bit floats. The difference between MSEs
is between 3 and 4 orders of magnitude in favor of posits when using fused operations.
This is reduced to two orders of magnitude if the quire is not used. Overall, the impact
of the quire is significant among all test cases, and its extra hardware cost is justified by
the accuracy gains. Moreover, there is no performance penalty when using fused MAC
operations and the quire, as posits execute as fast as floats.

Conclusions

Increased accuracy Same performance More area

In the past years, new emerging floating-point representations have provided alterna-
tives to the widespread IEEE 754 format. In particular, posit arithmetic has been shown
to have compelling benefits in areas such as machine learning or high-performance com-
puting. The PERCIVAL posit core advances the native integration of posit arithmetic
and quire in hardware. It provides a complete platform in which to further study the use
of posit arithmetic. Since it also includes an IEEE 754 FPU, accurate comparisons can
be made between these two arithmetic formats.

We are currently testing a posit64 version of PERCIVAL, which targets scientific
computing, on more complex linear algebra kernels [3]. Furthermore, we are also de-
veloping a standalone posit co-processor that could be attached to other RISC-V cores
both in the embedded and HPC domains.

References
[1] J. L. Gustafson and I. T. Yonemoto. Beating floating point at its own game: Posit arithmetic. Supercomputing Frontiers

and Innovations, 4(2):71–86, Apr. 2017.

[2] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008),
pages 1–84, July 2019.

[3] D. Mallasén, A. A. Del Barrio, and M. Prieto-Matias. Big-PERCIVAL: Exploring the Native Use of 64-Bit Posit Arithmetic
in Scientific Computing, May 2023.

[4] D. Mallasén, R. Murillo, A. A. D. Barrio, G. Botella, L. Piñuel, and M. Prieto-Matias. PERCIVAL: Open-Source Posit
RISC-V Core With Quire Capability. IEEE Transactions on Emerging Topics in Computing, 10(3):1241–1252, 2022.

[5] F. Zaruba and L. Benini. The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready
1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 27(11):2629–2640, Nov. 2019.


