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Abstract

This work describes the design and implementation of an open-source Advanced Interrupt Architecture (AIA)
IP compliant with the RISC-V AIA specification (v1.0-RC2). We have designed and implemented the core
extensions, the Advanced Platform Level Interrupt Controller (APLIC), and the Incoming Message-Signalled
Interrupt Controller (IMSIC) IPs. These IPs being integrated into a RISC-V CVA6-based (64-bit) SoC. We
conduct a preliminary evaluation of the system and present a hardware report. Our work showcases the feasibility
of implementing RISC-V AIA and establishes a base for future research and development. We will open-source
our IP to foster collaboration among the RISC-V community.

Introduction

The Platform Level Interrupt Controller (PLIC) is the
current interrupt controller in RISC-V systems, but
it has limitations in scalability and feature-richness.
These limitations are: (i) large physical address space
usage; (ii) sharing of M-mode and S-mode global reg-
isters; (iii) no support for Message Signal Interrupts
(MSI); (iv) no support for interrupt line sensing config-
uration; and (v) no support for virtualization, leading
to increased interrupt latency for VMs [1, 2].

The RISC-V Advanced Interrupt Architecture (AIA)
[3] is the novel reference specification for interrupt-
handling functionality. In this work, we report the
ongoing design, implementation, and validation of an
AIA IP compliant with the ratified specification. The
AIA IP will be open-sourced, contributing this way to
the RISC-V community.

RISC-V AIA in a nutshell

The AIA specification, currently in version 1.0-RC2, is
composed of three distinct components: (i) extended
local interrupts (AIA CSRs); (ii) Incoming Message-
Signalled Interrupt Controller (IMSIC); and (iii) Ad-
vanced Platform Level Interrupt Controller (APLIC).

The APLIC consists of a set of interrupt domains.
Each domain has its memory-mapped control region.
APLICs convert wired interrupts into MSIs when harts
implement IMSICs, serving as a replacement for the
PLIC in their absence.

The IMSIC supports MSIs with a set of interrupt
files, that are composed of arrays to track and enable
interrupts. It also provides for virtualization support,
enabling direct injection of interrupts into VMs.
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Design and Implementation

In this section, we briefly discuss the design and im-
plementation of the AIA in general, and the multiple
AIA components (i.e., APLIC, IMSIC) in particular.
The target design goals are scalability and modularity.

Design

APLIC. An APLIC domain comprises three mod-
ules: (i) gateway, (ii) notifier, and (iii) register control.
The gateway module receives the interrupt source and
evaluates if it can become pending. The notifier im-
plementation depends on the delivery mode supported
by the APLIC. For direct mode, the notifier finds the
highest pending and enabled interrupt and notifies the
hart. For MSI mode, the notifier sends newly pending
and enabled interrupts to a hart IMSIC. The register
controller manages the APLIC registers.

IMSIC. Access to the IMSIC occurs through the
CSRs. Creating a channel for communication between
the CSR module and the IMSIC results in explicit iso-
lation between them. This allows for easy integration
of the IMSIC module into other projects.

Implementation

The implementation of the AIA IP was carried out
in SystemVerilog HDL. Regarding the APLIC imple-
mentation, were created six modules, culminating into
2124 source lines of code (SLoC). For the IMSIC imple-
mentation, were developed two modules, encompassing
a total of 332 SLoC. Using multidimensional arrays,
it is simpler to extend the number of interrupt files
that a given IMSIC implement by simply modifying
the NR_INTP_FILES parameter of the module.

These IPs were then integrated in a CVA6-based
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Figure 1: Simplified view of a generic SoC architecture
with AIA related components (highlighted in blue).

SoC [4]. Originally, the SoC had a RISC-V PLIC,
which we replaced with the newly designed APLIC.
Then, we implemented the AIA core extensions and
finally the IMSIC. Figure 1 shows, highlighted in blue,
the AIA components in a generic SoC. At this point,
the CVA6 system bus is used to send the MSIs.

Preliminary Evaluation

Functional Validation

The functional validation process involved the use of
openSBI, the Linux operating system, and the Bao
hypervisor [5]. We successfully run Linux atop of Bao
in the CVA6-based SoC with the explored AIA IP.

Hardware Results

Table 1 summarizes the FPGA resources used for var-
ious SoC configurations on the Genesys2 board. The
first row represents the original SoC with PLIC, while
the second row is an SoC configuration where PLIC
is replaced by APLIC. It can be observed that the
new functionalities of APLIC have increased the LUTs
utilization by 3.40 % and the FF by 0.71 %. The third
row shows the hardware utilizations for the same SoC,
but now with a full AIA, including APLIC, IMSIC
with 3 interrupt files (M, S and VS), and the core
extensions Smaia, and Ssaia. Compared to the SoC
configuration with APLIC, there is a slight increase
of 1.54 % in LUTs and 0.34 % in FF, indicating that
the core extensions and IMSIC IP do not use much
hardware compared to APLIC.

Roadmap

Next, we plan to functionally validate the AIA IP
with other system virtualization-based software stacks,
such as KVM and XVisor, to ensure compatibility with

Table 1: Hardware resources used in a Genesys2 by dif-
ferent SoCs configurations. (1) Original SoC with PLIC;
(2) APLIC replaces the PLIC; (3) Complete AIA IP im-
plementation w/ 1VS-File.

SoC Con-
figuration

Resource Utilization
Utilization
(%)

PLIC (1)
LUT 74541/203800 36.58
FF 51446/407600 12.62

APLIC (2)
LUT 81480/203800 39.98
FF 54334/407600 13.33

AIA (3)
LUT 84610/203800 41.52
FF 55735/407600 13.67

other software. We also plan to conduct optimizations
to the APLIC design, such as using a single APLIC
domain, which can reduce hardware cost. Additionally,
we plan to explore different design approaches, such
as creating a dedicated bus to send MSIs, and imple-
menting the APLIC and IMSIC as a single module
placed near the hart.

Conclusion

This work presents the design and implementation of
an open-source AIA IP. It will be made public so that
it can be used by the RISC-V community. Future
activities will mainly focus on implementation, aiming
at reducing hardware costs.
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