Accelerating RISC-V Developments Through Network-on-Chip (NoC) Automation

Gabriel Busnot¹, Frank Schirrmeister² and Michael Frank²

¹Arteris, Montigny, France, ²Arteris, Campbell, CA, USA

Drivers for Network-on-Chip Physical Awareness

Computing sophistication and complexity continue to skyrocket

- Exponential transistor count growth curve ightarrow increased data traffic
- Number of logical cores \rightarrow quadratic/exponential growth in interconnect connectivity
- Overall SoC complexity \rightarrow more sub-systems requiring their own connectivity

Physical effects are pronounced at 16nm and below

- SoCs contain multiple Networks-on-Chip (NoCs), accounting for 10-12% of silicon
 Power, Performance, and Area (PPA) factors impacting NoC and SoC iterations
- Further impact expected at the more advanced nodes: 7nm, 5nm, 3nm, etc.
- Further impact expected at the more advanced hodes: 7nm, 5nm, 3nm, etc

Market pressures put a squeeze on project realities

Shrinking project schedules despite increasing project complexity

Can't Cross Advanced Node SoCs in One Clock Cycle

moden

Physical distance impacts the number of pipeline stages

Economics of using silicon-proven NoC IP versus in-house development Shortage of trained system IP engineers \rightarrow driving the shift to flexible IP automation

Source: <u>Techspot</u>, A Brief History of the Multi-Core Desktop CPU (2021)

Transport delay = $m{F}$ (foundry, routing stack, type of driving cell, process voltage, temperature, …)

#ToughToDoManually

#AutomationNeeded

USB eth sensor PCIe audio LCD

SATA

codec

wifi

CPU

BT

CPU

image

Manual Flow With Some Layout Awareness & Guidance

Physically Aware NoC IP with Pipeline Optimization

Arteris FlexNoC 5 Physically Aware Network-on-Chip IP

Up to 5X faster physical closure over manual iterations

Note: Multiple patents granted; additional patents pending

- Early physical awareness for faster convergence without re-designs
- Allows place and route tools a better starting point
- Shrinks interconnect area by 15% or more (vs pipeline over-provisioning)
- Reduces NoC IP power due to less pipeline logic and fewer LVT cells

Engineering efficiency

- Reducing hours of work to minutes, removing iteration loops
- Automated NoC element preparation for the timing closure process
- Seamless integration of GUI windows for new physically aware flow
- Topology visualized directly on floorplan with user-selectable filter options

Other enhancements

- Automates import/export of NoC configurations with Arteris Magillem
- Debug and Trace with ATB 128b and timestamps support
- AMBA 5 support of DVM 8.1 (Device Virtual Messaging)
- Re-order Buffer Optimization benefitting Cache and DRAM connectivity

Performance Computing and Datacenter RISC-V Chiplets

We are happy to share that we are partnering with Arteris to use Ncore and FlexNoC IP in our next-generation product, The combination of performance and features made it a great choice for both our AI chips and our high-performance RISC-V CPUs. The Arteris team and IP solved our on-chip network problems so we can focus on building our nextgeneration AI and RISC-V CPU products."

Enables SoC developers to build NoCs with faster physical closure!

