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Abstract 

Computational SRAM (C-SRAM) is a new computing solution for Near-Memory Computing. It allows to 

perform operations inside or next to the memory without transferring data over the system bus, leading to 

significantly reducing energy consuption. Operations are realized on large vectors of data occupying the entire 

physical row of C-SRAM array, leading to high performance gains. This paper presents the C-SRAM solution 

as an integrated vector-processing unit to be used by a RISC-V processor as an energy-efficient and high 

performing co-processor. The proposed programming model of the C-SRAM is based on the system bus of a 

RISC-V processor. 

Introduction 

The increasing amount of Internet of Things devices and 

exchanged data motivates the search for energy-efficient 

computing systems. By separating processing units from 

memories, traditional Von-Neumann architectures face 

severe latency and energy issues, limiting the performance 

of data-intensive applications. Indeed, as processors 

became faster and memories got denser, a 

processor/memory performance gap has emerged. To 

overcome this limitation, Near-Memory-Computing 

(NMC) is a promising solution since it carries out 

computations in or as close as possible to the memory. 

Computational SRAM (C-SRAM) solution [1-3], allows 

performing arithmetic, logic and memory operations inside 

or next to the memory without transferring data over the 

system bus, which is the most energy-consuming step when 

computing an operation. Operations are performed on large 

vectors of data occupying the whole C-SRAM line (not 

limited by the processor register size such as for existing 

vector processors). We introduce the C-SRAM solution in 

this paper as an integrated vector-processing unit to be used 

and programmed by a RISC-V processor as an energy-

efficient and high performing system. We present the 

programming model of the C-SRAM based on the RISC-V 

system bus to encode a C-SRAM computing instruction. 

Thanks to this approach, we are then able to interleave C-

SRAM computing instructions and RISC-V computing 

instructions. 

C-SRAM System 

C-SRAM system is composed of a RISC-V processor, an 

SRAM that stores program instructions, and a C-SRAM 

memory (storing and computing data) connected to a 32-bit 

system bus, as shown in Fig. 1. The RISC-V core runs the 

control part of the program, while the C-SRAM runs the 

main workload. The C-SRAM memory allows different 

logical, arithmetic and memory operations represented in 

Table 1.  

 
Fig. 1: C-SRAM System Architecture 

C-SRAM RISC-V based Programming 

Model 

In order to integrate the C-SRAM circuit into a 

conventional system without changing all the system 

architecture, we develop a communication protocol that 

defines the interaction between the C-SRAM memory and 

the RISC-V processor, and manages the transfer of C-

SRAM instructions [4]. 

In order not to change the ISA and the design of the RISC-

V, we propose to use the ‘STORE’ instruction to represent 

a C-SRAM instruction. We encode the C-SRAM operation 

and operands inside the registers of the ‘STORE’ 

instruction, as shown in Fig. 2. The ‘STORE’ RISC-V 

instruction represents then the near-memory C-SRAM 

operation. When sent to the C-SRAM, the instruction will 

decoded and then executed by the Near Memory Processing 
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Unit (NMPU). This solution is flexible and can be easily 

integrated in existing system architecture, without changing 

the ISA of the RISC-V processor, which facilitates time-to-

market. In addition, thanks to this solution, we can 

interleave RISC-V instruction and C-SRAM instruction. 

 

Table 1: C-SRAM Instruction Set Architecture.  

 

 
Fig. 2: C-SRAM Programming Model 

 

The proposed programming model is integrated in a 32-bit 

RISC-V architecture. 32-bit is the minimum size of system 

bus that permits to interface the C-SRAM as detailed in 

Fig. 3, where we define three base instruction formats 

(R/I/U). This permits to classify instructions sent from the 

CPU to the C-SRAM and decoded by the C-SRAM 

controller. These formats are defined on concatenated 

address and data system bus to obtain an ISA aligned on 64 

bits (32-bit data bus + 32-bit address bus) in length. Each 

format refers to a specific set of instructions: R-type groups 

all instructions where operands address two memory lines; 

I-type groups all instructions that operates on a 16-bit 

immediate value and one memory line; and U-type groups 

all instructions, which applies on a 32-bit immediate value 

to one memory line. Moreover, the opcode field specifies 

the operation to perform in the C-SRAM. It is encoded over 

8 bits, which allows to perform up to 256 operations. Then, 

dest, src2 and src1 addresses are relative to the vector 

addresses of the memory array. 

 
Fig. 3: C-SRAM 64-bit Instruction Formats encoded 

in 32-bit Address Bus and 32-bit Data Bus 

RISC-V based Software Tool Chain 

To support the proposed programming model, we have 

developed a software stack ranging from a QEMU based 

emulator, a RISC-V C cross-compiler and debugger, a 

source-to-source compiler used to generate C-SRAM 

instructions. The RISC-V ecosystem was helpful to go 

faster and to be flexible. Accessing the software stack of 

the RISC-V permits to implement the proposed 

programming model and evaluate different applications in 

terms of energy and performance gains. 

As future works, we propose to integrate our C-SRAM 

instruction set inside the RISC-V instruction set, thing that 

is not possible with other hardware platforms. This helps 

optimizing code generation phase and thus saving 

execution time. 
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Category 
Width 

(bits) 
Mnemonic Description 

Memory 

Line copy Copy a line into another 

Line not One's complement negation 

8,16,32 bcast 
Broadcast 8,16 or 32-bit  

value to the whole Line 

32,64 hswap 
Horizontal 32 or 64-bit 

word swap 

Logical 

8,16,32 slli, srli 
Shift Left or Right Logical 

Immediate 

Line and, nand Logical AND 

Line or, nor Logical OR 

Line xor, xnor Logical XOR 

Arithmetic 

8,16,32 add Arithmetic Addition 

8,16,32 sub Arithmetic Subtraction 

8,16,32 cmp Comparison 

8, 16,32 abs Arithmetic Absolute value 

8 mul 
Arithmetic 8-bit integer  

multiply 

8 
mac 

 

Arithmetic 8-bit integer 

 multiply-accumulate 


