
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

RISC-V based Programming Model of a Computational

SRAM Vector Processing Unit
Maha Kooli, Henri-Pierre Charles, Thaddée Bricout, Jean-Philippe Noel, Maria RAMIREZ-CORRALES, Bastien Giraud

Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France

FirstName.LastName@cea.fr

Abstract

Computational SRAM (C-SRAM) is a new computing solution for Near-Memory Computing. It allows to

perform operations inside or next to the memory without transferring data over the system bus, leading to

significantly reducing energy consuption. Operations are realized on large vectors of data occupying the entire

physical row of C-SRAM array, leading to high performance gains. This paper presents the C-SRAM solution

as an integrated vector-processing unit to be used by a RISC-V processor as an energy-efficient and high

performing co-processor. The proposed programming model of the C-SRAM is based on the system bus of a

RISC-V processor.

Introduction

The increasing amount of Internet of Things devices and

exchanged data motivates the search for energy-efficient

computing systems. By separating processing units from

memories, traditional Von-Neumann architectures face

severe latency and energy issues, limiting the performance

of data-intensive applications. Indeed, as processors

became faster and memories got denser, a

processor/memory performance gap has emerged. To

overcome this limitation, Near-Memory-Computing

(NMC) is a promising solution since it carries out

computations in or as close as possible to the memory.

Computational SRAM (C-SRAM) solution [1-3], allows

performing arithmetic, logic and memory operations inside

or next to the memory without transferring data over the

system bus, which is the most energy-consuming step when

computing an operation. Operations are performed on large

vectors of data occupying the whole C-SRAM line (not

limited by the processor register size such as for existing

vector processors). We introduce the C-SRAM solution in

this paper as an integrated vector-processing unit to be used

and programmed by a RISC-V processor as an energy-

efficient and high performing system. We present the

programming model of the C-SRAM based on the RISC-V

system bus to encode a C-SRAM computing instruction.

Thanks to this approach, we are then able to interleave C-

SRAM computing instructions and RISC-V computing

instructions.

C-SRAM System

C-SRAM system is composed of a RISC-V processor, an

SRAM that stores program instructions, and a C-SRAM

memory (storing and computing data) connected to a 32-bit

system bus, as shown in Fig. 1. The RISC-V core runs the

control part of the program, while the C-SRAM runs the

main workload. The C-SRAM memory allows different

logical, arithmetic and memory operations represented in

Table 1.

Fig. 1: C-SRAM System Architecture

C-SRAM RISC-V based Programming

Model

In order to integrate the C-SRAM circuit into a

conventional system without changing all the system

architecture, we develop a communication protocol that

defines the interaction between the C-SRAM memory and

the RISC-V processor, and manages the transfer of C-

SRAM instructions [4].

In order not to change the ISA and the design of the RISC-

V, we propose to use the ‘STORE’ instruction to represent

a C-SRAM instruction. We encode the C-SRAM operation

and operands inside the registers of the ‘STORE’

instruction, as shown in Fig. 2. The ‘STORE’ RISC-V

instruction represents then the near-memory C-SRAM

operation. When sent to the C-SRAM, the instruction will

decoded and then executed by the Near Memory Processing

mailto:FirstName.LastName@cea.fr

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

Unit (NMPU). This solution is flexible and can be easily

integrated in existing system architecture, without changing

the ISA of the RISC-V processor, which facilitates time-to-

market. In addition, thanks to this solution, we can

interleave RISC-V instruction and C-SRAM instruction.

Table 1: C-SRAM Instruction Set Architecture.

Fig. 2: C-SRAM Programming Model

The proposed programming model is integrated in a 32-bit

RISC-V architecture. 32-bit is the minimum size of system

bus that permits to interface the C-SRAM as detailed in

Fig. 3, where we define three base instruction formats

(R/I/U). This permits to classify instructions sent from the

CPU to the C-SRAM and decoded by the C-SRAM

controller. These formats are defined on concatenated

address and data system bus to obtain an ISA aligned on 64

bits (32-bit data bus + 32-bit address bus) in length. Each

format refers to a specific set of instructions: R-type groups

all instructions where operands address two memory lines;

I-type groups all instructions that operates on a 16-bit

immediate value and one memory line; and U-type groups

all instructions, which applies on a 32-bit immediate value

to one memory line. Moreover, the opcode field specifies

the operation to perform in the C-SRAM. It is encoded over

8 bits, which allows to perform up to 256 operations. Then,

dest, src2 and src1 addresses are relative to the vector

addresses of the memory array.

Fig. 3: C-SRAM 64-bit Instruction Formats encoded

in 32-bit Address Bus and 32-bit Data Bus

RISC-V based Software Tool Chain

To support the proposed programming model, we have

developed a software stack ranging from a QEMU based

emulator, a RISC-V C cross-compiler and debugger, a

source-to-source compiler used to generate C-SRAM

instructions. The RISC-V ecosystem was helpful to go

faster and to be flexible. Accessing the software stack of

the RISC-V permits to implement the proposed

programming model and evaluate different applications in

terms of energy and performance gains.

As future works, we propose to integrate our C-SRAM

instruction set inside the RISC-V instruction set, thing that

is not possible with other hardware platforms. This helps

optimizing code generation phase and thus saving

execution time.

References

[1] J-P. Noel, et al. 2020. A 35.6 TOPS/W/mm2 3-stage

pipelined computational SRAM with adjustable form factor

for highly data-centric applications. IEEE ISSCL Letters 3,

286–289.

[2] J-P. Noel et al. 2020. Computational SRAM Design

Automation using Pushed-Rule Bitcells for Energy-

Efficient Vector Processing. In IEEE DATE Conference.

1187–1192.

[3] M. Kooli, et al. 2022. Towards a Truly Integrated

Vector Processing Unit for Memory-bound Applications

Based on a Cost-competitive Computational SRAM Design

Solution. J. Emerg. Technol. Comput. Syst. 18, 2, Article

40, 26 pages.

[4] M. Kooli et al. 2018. Smart instruction codes for in-

memory computing architectures compatible with standard

SRAM interfaces. In IEEE DATE Conference. 1634–1639.

Category
Width

(bits)
Mnemonic Description

Memory

Line copy Copy a line into another

Line not One's complement negation

8,16,32 bcast
Broadcast 8,16 or 32-bit

value to the whole Line

32,64 hswap
Horizontal 32 or 64-bit

word swap

Logical

8,16,32 slli, srli
Shift Left or Right Logical

Immediate

Line and, nand Logical AND

Line or, nor Logical OR

Line xor, xnor Logical XOR

Arithmetic

8,16,32 add Arithmetic Addition

8,16,32 sub Arithmetic Subtraction

8,16,32 cmp Comparison

8, 16,32 abs Arithmetic Absolute value

8 mul
Arithmetic 8-bit integer

multiply

8
mac

Arithmetic 8-bit integer

 multiply-accumulate

