\

Data

Von Neumann

Computation
=

Address

4

von Neumann System

RISC-V based Programming Model of a Computational

SRAM Vector Processing Unit

Maha Kooli, Henri-Pierre Charles, Thaddée Bricout, Jean-Philippe Noel, Maria Ramirez Corrales, Bastien Giraud
Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France
maha.kooli@cea.fr

Bottleneck

Address

\ 4

In/Near-Memory Computing System

I Fig 1. In/Near Memory Computing Architecture

 Integrating computation inside or near memories

* Reduce data transfer between processor and memory

 Increase the system performance and reduce energy consumption

System bus
(32-bit data IE-IE-I: it address)

i 4

32-bit
Host CPU

h:2it g I I >

Controller

2hnt

I Fig 3. C-SRAM Architecture

* Compute where datais located

» Vector computing

> Low-latency memory

Computational SRAM (C-SRAM)

* Rethink micro-architecture and compilation

» Specific instructions

» Compile-time dynamic allocation

* Two design methodologies

> Full custom solution

- Change the memory bitcell

- Specific in- and near-memory functions

> Automated solution

- Based on SRAM cut generated from SRAM compilers

- Near memory functions only

- Better Time-to-market

Category | Width (bits) Mnemonic Description
CSRAM Line [copy Copy a line inti another
8,16,32 copyeq, copyged, copygt. Conditional Copy
Memory copyleq, copylt, copyneq
8,16,32 |bcast Broadcast 8,16 or 32-bit value to whole line
32,64 hswap Horizontal 32 or 64-bit word swap
8,16,32 |slli, srli Shift Left or Right Logical Immediate
. CSRAM Line|and, nand Logical AND
Logical _ ;
CSRAM Line |or, nor Logical OR
CSRAM Line |xor, xnor Logical XOR
8,16,32 |add Arithmetic Addition
8,16,32 |[sub Arithmetic Subtraction
Arithmetic| 8,16,32 |cmp Comparison
8 mullo, mulhi Arithmetic 8-bit integer multiply
8 maclo Arithmetic 8-bit integer multiply-accumulate

I Table 1. C-SRAM Instruction Set Architecture

C-SRAM Programming Model

A C-SRAM instruction is composed of 3 elements that must be encoded on the bus transaction:
 The opcode defines the C-SRAM operation
 The source addresses define the memory vector-lines that store the operands

« The destination address defines the memory vector-line that stores the result

Address Bus (32-bit) Data Bus (32-bit)

(57: ! 58 50 3;4 32 16 0
U-Type i i | i
100000 | OPERAND DESTINATION | 00 IMMEDIATE 32-BIT
I_'I‘FPE : : ! :
100000 | OPERAND DESTINATION | 00| IMMEDIATE 16-BIT SOURCE 1
R-Type | | | i
100000 | OPERAND DESTINATION |00 SOURCE 2 SOURCE 1
I Fig 2. C-SRAM 64-bit Instruction Formats
s ™) F Y 4 '
SRAM RISCV C-SRAM
Decode
32 bit
> Data
Instructions ATU
Registers . .
2 N-bit | VPU Unit
N A .-' L 8
b) C-SRAM inst.

(c) instructions (a) data

32-bit OBI bus

Data Transfer: 32-bit load/store conventional memory access
C-SRAM instructions: 64-bit STORE instruction encoding C-SRAM operation & operands
Program Code: load/store, CPU scalar compute, C-SRAMvector compute, branch, etc

(a)
(b)
(€)

I Fig 4. C-SRAM System Communication Protocol

« The communication protocol that defines the interaction between the C-SRAM and the host
processor, and manages the transfer of C-SRAM instructions, helps to integrate the C-SRAM
circuit into an existing system without changing all its architecture

 The host processor runs the control part of the program, while the C-SRAM runs the main
workload.

 We propose to use the ‘STORE’ instruction to represent a C-SRAM instruction, where the C-

SRAM operation and operands are encoded inside the registers of the ‘STORE’ instruction,

RISC-V Execution Flow C-SRAM Flow

lui r0, #CM MULB OPC
slli r2, #ROWO, 2

or rO, r0, r2

slli rl, #ROW1l, #16
or rl, rl, #ROW2

sw rl, 0(r0)

Computing Throughput

mul8 ROWO, ROW1l, ROW2

Degree of parallelism

Generation of C-SRAM instructions using dynamic addresses

I Fig 5. C-SRAM generated instruction

RISC-V based Software Tool Chain

To support the proposed programming model, we have developed a software stack:

A QEMU-based plugin emulator

« A RISC-V C cross-compiler and debugger

A source-to-source compiler used to generate C-SRAM instructions

1 K. Mambu et al. 2023 Dedicated Instruction Set for Pattern-based Data Transfers: an Experimental Validation on Systems Containing In-Memory Computing Units. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

2 Mambu et al. 2022 Towards Integration of a Dedicated Memory Controller and Its Instruction Set to Improve Performance of Systems Containing Computational SRAM. J. Low Power Electron. Appl., 12, 18.

3 M. Kooli, et al. 2022. Towards a Truly Integrated Vector Processing Unit for Memory-bound Applications Based on a Cost-competitive Computational SRAM Design Solution. J. Emerg. Technol. Comput. Syst. 18, 2, Article 40, 26 pages.
4 K. Mambu et al. 2021. Instruction Set Design Methodology for In-Memory Computing through QEMU-based System Emulator. In IEEE ESWEEK-RSP.

5 J-P. Noel, et al. 2020. A 35.6 TOPS/W/mm2 3-stage pipelined computational SRAM with adjustable form factor for highly data-centric applications. IEEE ISSCL Letters 3, 286—289.

6 J-P. Noel et al. 2020. Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing. In IEEE DATE Conference. 1187-1192.

7 M. Kooli et al. 2018. Smart instruction codes for in-memory computing architectures compatible with standard SRAM interfaces. In IEEE DATE Conference. 1634-1639.

