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I Fig 1. In/Near Memory Computing Architecture

 Integrating computation inside or near memories

* Reduce data transfer between processor and memory

 Increase the system performance and reduce energy consumption
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I Fig 3. C-SRAM Architecture

* Compute where datais located

» Vector computing

> Low-latency memory

Computational SRAM (C-SRAM)

* Rethink micro-architecture and compilation

» Specific instructions

» Compile-time dynamic allocation

* Two design methodologies

> Full custom solution

- Change the memory bitcell

- Specific in- and near-memory functions

> Automated solution

- Based on SRAM cut generated from SRAM compilers

- Near memory functions only

- Better Time-to-market

Category | Width (bits) Mnemonic Description
CSRAM Line [copy Copy a line inti another
8,16,32 copyeq, copyged, copygt. Conditional Copy
Memory copyleq, copylt, copyneq
8,16,32 |bcast Broadcast 8,16 or 32-bit value to whole line
32,64 hswap Horizontal 32 or 64-bit word swap
8,16,32 |slli, srli Shift Left or Right Logical Immediate
. CSRAM Line|and, nand Logical AND
Logical _ ;
CSRAM Line |or, nor Logical OR
CSRAM Line |xor, xnor Logical XOR
8,16,32 |add Arithmetic Addition
8,16,32 |[sub Arithmetic Subtraction
Arithmetic| 8,16,32 |cmp Comparison
8 mullo, mulhi Arithmetic 8-bit integer multiply
8 maclo Arithmetic 8-bit integer multiply-accumulate

I Table 1. C-SRAM Instruction Set Architecture

C-SRAM Programming Model

A C-SRAM instruction is composed of 3 elements that must be encoded on the bus transaction:
 The opcode defines the C-SRAM operation
 The source addresses define the memory vector-lines that store the operands

« The destination address defines the memory vector-line that stores the result

Address Bus (32-bit) Data Bus (32-bit)

(57: ! 58 50 3;4 32 16 0
U-Type i i | i
100000 | OPERAND DESTINATION | 00 IMMEDIATE 32-BIT
I_'I‘FPE : : ! :
100000 | OPERAND DESTINATION | 00| IMMEDIATE 16-BIT SOURCE 1
R-Type | | | i
100000 | OPERAND DESTINATION |00 SOURCE 2 SOURCE 1
I Fig 2. C-SRAM 64-bit Instruction Formats
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Data Transfer: 32-bit load/store conventional memory access
C-SRAM instructions: 64-bit STORE instruction encoding C-SRAM operation & operands
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I Fig 4. C-SRAM System Communication Protocol

« The communication protocol that defines the interaction between the C-SRAM and the host
processor, and manages the transfer of C-SRAM instructions, helps to integrate the C-SRAM
circuit into an existing system without changing all its architecture

 The host processor runs the control part of the program, while the C-SRAM runs the main
workload.

 We propose to use the ‘STORE’ instruction to represent a C-SRAM instruction, where the C-

SRAM operation and operands are encoded inside the registers of the ‘STORE’ instruction,

RISC-V Execution Flow C-SRAM Flow

lui r0, #CM MULB OPC
slli r2, #ROWO, 2

or rO, r0, r2

slli rl, #ROW1l, #16
or rl, rl, #ROW2

sw rl, 0(r0)

Computing Throughput

mul8 ROWO, ROW1l, ROW2

Degree of parallelism

Generation of C-SRAM instructions using dynamic addresses

I Fig 5. C-SRAM generated instruction

RISC-V based Software Tool Chain

To support the proposed programming model, we have developed a software stack:

A QEMU-based plugin emulator

« A RISC-V C cross-compiler and debugger

A source-to-source compiler used to generate C-SRAM instructions
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