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RISC-V based Programming Model of a Computational 

SRAM Vector Processing Unit

Von Neumann Bottleneck

To support the proposed programming model, we have developed a software stack:

• A QEMU-based plugin emulator

• A RISC-V C cross-compiler and debugger

• A source-to-source compiler used to generate C-SRAM instructions
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Fig 1. In/Near Memory Computing Architecture

• Integrating computation inside or near memories

• Reduce data transfer between processor and memory

• Increase the system performance and reduce energy consumption
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Category Width (bits) Mnemonic Description

Memory

CSRAM Line copy Copy a line inti another

8,16,32
copyeq, copygeq, copygt,

copyleq, copylt, copyneq
Conditional Copy

8,16,32 bcast Broadcast 8,16 or 32-bit value to whole line

32,64 hswap Horizontal 32 or 64-bit word swap

Logical

8,16,32 slli, srli Shift Left or Right Logical Immediate

CSRAM Line and, nand Logical AND

CSRAM Line or, nor Logical OR

CSRAM Line xor, xnor Logical XOR

Arithmetic

8,16,32 add Arithmetic Addition

8,16,32 sub Arithmetic Subtraction

8,16,32 cmp Comparison

8 mullo, mulhi Arithmetic 8-bit integer multiply

8 maclo Arithmetic 8-bit integer multiply-accumulate

A C-SRAM instruction is composed of 3 elements that must be encoded on the bus transaction:

• The opcode defines the C-SRAM operation

• The source addresses define the memory vector-lines that store the operands

• The destination address defines the memory vector-line that stores the result

• The communication protocol that defines the interaction between the C-SRAM and the host

processor, and manages the transfer of C-SRAM instructions, helps to integrate the C-SRAM

circuit into an existing system without changing all its architecture

• The host processor runs the control part of the program, while the C-SRAM runs the main

workload.

• We propose to use the ‘STORE’ instruction to represent a C-SRAM instruction, where the C-

SRAM operation and operands are encoded inside the registers of the ‘STORE’ instruction,

Fig 2. C-SRAM 64-bit Instruction Formats

Table 1. C-SRAM Instruction Set Architecture

Fig 3. C-SRAM Architecture

• Compute where data is located

Vector computing

 Low-latency memory

• Rethink micro-architecture and compilation

Specific instructions

Compile-time dynamic allocation

• Two design methodologies

 Full custom solution

- Change the memory bitcell

- Specific in- and near-memory functions

Automated solution

- Based on SRAM cut generated from SRAM compilers

- Near memory functions only

- Better Time-to-market

Fig 4. C-SRAM System Communication Protocol

Fig 5. C-SRAM generated instruction


