
200

7

RISC-V based Programming Model of a Computational 

SRAM Vector Processing Unit

Von Neumann Bottleneck

To support the proposed programming model, we have developed a software stack:

• A QEMU-based plugin emulator

• A RISC-V C cross-compiler and debugger

• A source-to-source compiler used to generate C-SRAM instructions

1 K. Mambu et al. 2023 Dedicated Instruction Set for Pattern-based Data Transfers: an Experimental Validation on Systems Containing In-Memory Computing Units. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

2 Mambu et al. 2022 Towards Integration of a Dedicated Memory Controller and Its Instruction Set to Improve Performance of Systems Containing Computational SRAM. J. Low Power Electron. Appl., 12, 18. 

3 M. Kooli, et al. 2022. Towards a Truly Integrated Vector Processing Unit for Memory-bound Applications Based on a Cost-competitive Computational SRAM Design Solution. J. Emerg. Technol. Comput. Syst. 18, 2, Article 40, 26 pages.

4 K. Mambu et al. 2021. Instruction Set Design Methodology for In-Memory Computing through QEMU-based System Emulator. In IEEE ESWEEK-RSP.

5 J-P. Noel, et al. 2020. A 35.6 TOPS/W/mm2 3-stage pipelined computational SRAM with adjustable form factor for highly data-centric applications. IEEE ISSCL Letters 3, 286–289.

6 J-P. Noel et al. 2020. Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing. In IEEE DATE Conference. 1187–1192.

7 M. Kooli et al. 2018. Smart instruction codes for in-memory computing architectures compatible with standard SRAM interfaces. In IEEE DATE Conference. 1634–1639.

Fig 1. In/Near Memory Computing Architecture

• Integrating computation inside or near memories

• Reduce data transfer between processor and memory

• Increase the system performance and reduce energy consumption

C-SRAM Programming Model

Computational SRAM (C-SRAM)

RISC-V based Software Tool Chain

Maha Kooli, Henri-Pierre Charles, Thaddée Bricout, Jean-Philippe Noel, María Ramírez Corrales, Bastien Giraud

Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France

maha.kooli@cea.fr

Category Width (bits) Mnemonic Description

Memory

CSRAM Line copy Copy a line inti another

8,16,32
copyeq, copygeq, copygt,

copyleq, copylt, copyneq
Conditional Copy

8,16,32 bcast Broadcast 8,16 or 32-bit value to whole line

32,64 hswap Horizontal 32 or 64-bit word swap

Logical

8,16,32 slli, srli Shift Left or Right Logical Immediate

CSRAM Line and, nand Logical AND

CSRAM Line or, nor Logical OR

CSRAM Line xor, xnor Logical XOR

Arithmetic

8,16,32 add Arithmetic Addition

8,16,32 sub Arithmetic Subtraction

8,16,32 cmp Comparison

8 mullo, mulhi Arithmetic 8-bit integer multiply

8 maclo Arithmetic 8-bit integer multiply-accumulate

A C-SRAM instruction is composed of 3 elements that must be encoded on the bus transaction:

• The opcode defines the C-SRAM operation

• The source addresses define the memory vector-lines that store the operands

• The destination address defines the memory vector-line that stores the result

• The communication protocol that defines the interaction between the C-SRAM and the host

processor, and manages the transfer of C-SRAM instructions, helps to integrate the C-SRAM

circuit into an existing system without changing all its architecture

• The host processor runs the control part of the program, while the C-SRAM runs the main

workload.

• We propose to use the ‘STORE’ instruction to represent a C-SRAM instruction, where the C-

SRAM operation and operands are encoded inside the registers of the ‘STORE’ instruction,

Fig 2. C-SRAM 64-bit Instruction Formats

Table 1. C-SRAM Instruction Set Architecture

Fig 3. C-SRAM Architecture

• Compute where data is located

Vector computing

 Low-latency memory

• Rethink micro-architecture and compilation

Specific instructions

Compile-time dynamic allocation

• Two design methodologies

 Full custom solution

- Change the memory bitcell

- Specific in- and near-memory functions

Automated solution

- Based on SRAM cut generated from SRAM compilers

- Near memory functions only

- Better Time-to-market

Fig 4. C-SRAM System Communication Protocol

Fig 5. C-SRAM generated instruction


