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Abstract 
RISC-V is an open and free ISA designed to be modular. It enables new business models. Increasingly, AI 

chips and other DSAs are adopting RISC-V. With the finalization of the RISC-V Vector extension, the industry 
is looking for innovative solutions to accelerate AI and HPC applications. Maintaining a wide range of hand-
optimized intrinsic kernels for various AI chips is costly and difficult to scale. We believe that RVV auto-
vectorization is the key technique to alleviate this burden on human resources. We have evaluated the auto-
vectorization performance of our LLVM-based compiler ZCC on some popular kernels, and it shows that ZCC 
has an 18% better dynamic instruction count performance compared to hand-optimized kernels written in RVV 
built-in functions. To the best of our knowledge, ZCC is the only one that can successfully auto-vectorize both 
inner and outer loops by fully utilizing RVV features. ZCC has also achieved a 30% better performance 
(dynamic instruction count) compared to LLVM on SPECInt 2006. 

Introduction 
Vector instruction extensions are widely used to 

accelerate High Performance Computing (HPC) 
applications such as climate modeling, drug design, 
structural analysis, machine learning, and more. There are 
two types of vector processor implementations: one is the 
widely used SIMD engines, such as SSE and AVX, 
implemented in x86 processors; the other is scalable vector, 
such as ARM SVE and RISC-V scalable vector extensions. 
 Both SIMD and scalable vector process data in parallel. 

SIMD operations are performed on fixed-size vector 
registers, fixed-size vector registers can limit the scalability 
and efficiency of the architecture. Unlike SIMD, scalable 
vector supports variable vector length, enabling the 
architecture to scale across a wide range of hardware and 
workloads. 

The RISC-V vector extension is designed to be a scalable, 
future-proof ISA. A single compiled RVV (RISC-V 
Vector) program can be deployed onto wide range Vector 
Processor Units to fully utilizing the hardware resources, 
regardless of how many vector processing lanes or units are 
designed into the processor. The actual vector length (VL) 
processed by each RVV instruction is determined at 
runtime by the hardware, based on the requested VL from 
the vsetvl instruction and the maximum VL supported by 
the hardware. 

Motivation 
Converting HPC applications in high-level languages 

such as C, C++ and Fortran into vector instructions can be 
challenging. Generally, there are two approaches to 
vectorizing application source code: 1. Users can manually 
write vector built-in functions within their application code. 
2. A more efficient method involves allowing the compiler 

to automatically transform application code into vector 
instructions. While the first approach may initially achieve 
higher performance, hand-optimized code with built-in 
functions can be difficult to maintain. Furthermore, they 
may be challenging to adapt to varying hardware 
configurations, hinder the compiler's ability to perform 
additional optimizations, and ultimately limit hardware 
design space exploration and evolution. 

Auto-vectorization is a popular research topic in the HPC 
field and is implemented in both open-source and 
commercial compilers, such as LLVM and GCC. We have 
studied the auto-vectorization implementations in LLVM 
and EPI LLVM[1]. The SIMD auto-vectorization for both 
innermost loops and outer loops is relatively mature, thanks 
to compile time known vector register width and the 
introduction of scalar tail loops, scalable vector auto-
vectorization is bugged and very limited in both compilers.  

Auto-vectorization for innermost loop and outer loops 
employs distinct techniques. For innermost loop, we flatten 
them into a single basic block by transforming control 
flows into masked execution. In contrast, for outer loop 
auto-vectorization, the control flows remain unchanged 
after vectorization. 

Our work 
ZCC is an optimized compiler based on LLVM by 

Terapines Technology. We have improved it to produce 
much better performance and higher code density than open 
source ones. Here are examples of some optimizations we 
have implemented in ZCC to improve RVV performance. 

1. We have improved the cost model to calculate 
register grouping by estimating a best LMUL from 8 
to 1/8 while avoiding register spills. The LMUL is 
halved and search process continues if register spills 
may happen. The algorithm stops upon identifying a 
LMUL that doesn’t lead to register spills. This 
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optimization is implemented in LLVM IR level, 
allowing for an approximate calculation of register 
pressure. 

2. The second enhancement we have introduced in ZCC 
involves implementing reduction operations within 
the inner loop vectorization. This optimization 
eliminates the need to duplicate scalar operations as 
vector operations, thereby freeing up vector registers 
and promoting increased parallelism. 

3. We ported Intel’s SIMD outer loop optimization for 
loops in series #1[2] to support RVV features, such as 
introducing VP execution in VPlan to eliminate tail 
loop. The importance of outer loop optimization is to 
optimize memory access pattern, such as turning 
stride memory access to unit-stride memory access. 

We conducted benchmark tests of ZCC against widely-
used computer vision kernels, which were hand-optimized 
using RVV built-ins and compiled with EPI LLVM 
(version 9cfcff6873), LLVM 16, and GCC 12.2. As 
illustrated in Figure 1, ZCC exhibits an average 18% 
reduction in dynamic instruction count compared to hand-
written intrinsics and achieves a performance up to 100 
times faster than that of EPI LLVM, LLVM, and GCC. 

 

  

  
Figure 1. Relative dynamic instruction counts of 4 AI kernels running on 
RV32IMCV ISA simulator, vlenb=512. Lower is better. Source code is 

available at https://github.com/dodohack/rv_lib 
 

Our compiler can successfully auto-vectorize outer loops 
in correlation, psroi and wrap with the assistance of 
"pragma" which indicates which level of loops should be 
vectorized and ensures there is no memory overlap between 
input and output buffers. Moreover, outer loop 
vectorization may enhance memory access patterns in some 
cases. For example, while profiling on FPGA, we observed 
a 50% cycle count improvement in the correlation kernel 
compiled by ZCC compared to the RVV intrinsic version, 
even though the dynamic instruction count improvement 
was only 8.5%. The resize kernel compiled by ZCC 
exhibits almost a 100% dynamic instruction count 
improvement over the RVV intrinsic version, as our 

compiler can generate operations with twice the size of 
register groups. 

We also utilized SPECInt2006 to benchmark ZCC against 
LLVM and GCC. As demonstrated in Figure 2, ZCC 
exhibits a 30% improvement in dynamic instruction count 
performance compared to LLVM on RV64GCBV. ZCC 
still shows a 13% performance improvement compared to 
LLVM on RV64GCB. The auto-vectorization feature in 
ZCC contributes to an average performance gain of 17% in 
SPECInt2006. 

We were unable to evaluate the auto-vectorization 
performance of LLVM and GCC on SPECInt2006, as both 
compilers encountered crashes during the compilation of 
some test cases when auto-vectorization was enabled. 

 

 
Figure 2. Dynamic instruction counts of SPECInt2006, running on 

RV64GCBV ISA simulator, vlenb=512. Lower is better. 

Future work 
The outer loop auto-vectorization implemented in ZCC is 

still in its early stages. Outer loop vectorization can be 
grouped into four series [2], but only series #1 has been 
implemented in ZCC thus far, optimizations for series #2, 
#3, #4 will be gradually implemented in ZCC. 

Conclusion 
ZCC has already shown great dynamic instruction count 

improvements over upstream/commercial compilers. With 
future work on target dependent optimization, ZCC can 
substantially reduce the cost of maintaining AI kernels and 
math libraries, ultimately accelerating the development of 
DSA and HPC hardware and software. 
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