
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Accelerate HPC and AI applications with RVV auto
vectorization
Ming Yan1, Hualin Wu1

1Terapines Technology (Wuhan) Co., Ltd

Abstract
RISC-V is an open and free ISA designed to be modular. It enables new business models. Increasingly, AI

chips and other DSAs are adopting RISC-V. With the finalization of the RISC-V Vector extension, the industry
is looking for innovative solutions to accelerate AI and HPC applications. Maintaining a wide range of hand-
optimized intrinsic kernels for various AI chips is costly and difficult to scale. We believe that RVV auto-
vectorization is the key technique to alleviate this burden on human resources. We have evaluated the auto-
vectorization performance of our LLVM-based compiler ZCC on some popular kernels, and it shows that ZCC
has an 18% better dynamic instruction count performance compared to hand-optimized kernels written in RVV
built-in functions. To the best of our knowledge, ZCC is the only one that can successfully auto-vectorize both
inner and outer loops by fully utilizing RVV features. ZCC has also achieved a 30% better performance
(dynamic instruction count) compared to LLVM on SPECInt 2006.

Introduction
Vector instruction extensions are widely used to

accelerate High Performance Computing (HPC)
applications such as climate modeling, drug design,
structural analysis, machine learning, and more. There are
two types of vector processor implementations: one is the
widely used SIMD engines, such as SSE and AVX,
implemented in x86 processors; the other is scalable vector,
such as ARM SVE and RISC-V scalable vector extensions.
 Both SIMD and scalable vector process data in parallel.

SIMD operations are performed on fixed-size vector
registers, fixed-size vector registers can limit the scalability
and efficiency of the architecture. Unlike SIMD, scalable
vector supports variable vector length, enabling the
architecture to scale across a wide range of hardware and
workloads.

The RISC-V vector extension is designed to be a scalable,
future-proof ISA. A single compiled RVV (RISC-V
Vector) program can be deployed onto wide range Vector
Processor Units to fully utilizing the hardware resources,
regardless of how many vector processing lanes or units are
designed into the processor. The actual vector length (VL)
processed by each RVV instruction is determined at
runtime by the hardware, based on the requested VL from
the vsetvl instruction and the maximum VL supported by
the hardware.

Motivation
Converting HPC applications in high-level languages

such as C, C++ and Fortran into vector instructions can be
challenging. Generally, there are two approaches to
vectorizing application source code: 1. Users can manually
write vector built-in functions within their application code.
2. A more efficient method involves allowing the compiler

to automatically transform application code into vector
instructions. While the first approach may initially achieve
higher performance, hand-optimized code with built-in
functions can be difficult to maintain. Furthermore, they
may be challenging to adapt to varying hardware
configurations, hinder the compiler's ability to perform
additional optimizations, and ultimately limit hardware
design space exploration and evolution.

Auto-vectorization is a popular research topic in the HPC
field and is implemented in both open-source and
commercial compilers, such as LLVM and GCC. We have
studied the auto-vectorization implementations in LLVM
and EPI LLVM[1]. The SIMD auto-vectorization for both
innermost loops and outer loops is relatively mature, thanks
to compile time known vector register width and the
introduction of scalar tail loops, scalable vector auto-
vectorization is bugged and very limited in both compilers.

Auto-vectorization for innermost loop and outer loops
employs distinct techniques. For innermost loop, we flatten
them into a single basic block by transforming control
flows into masked execution. In contrast, for outer loop
auto-vectorization, the control flows remain unchanged
after vectorization.

Our work
ZCC is an optimized compiler based on LLVM by

Terapines Technology. We have improved it to produce
much better performance and higher code density than open
source ones. Here are examples of some optimizations we
have implemented in ZCC to improve RVV performance.

1. We have improved the cost model to calculate
register grouping by estimating a best LMUL from 8
to 1/8 while avoiding register spills. The LMUL is
halved and search process continues if register spills
may happen. The algorithm stops upon identifying a
LMUL that doesn’t lead to register spills. This

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

optimization is implemented in LLVM IR level,
allowing for an approximate calculation of register
pressure.

2. The second enhancement we have introduced in ZCC
involves implementing reduction operations within
the inner loop vectorization. This optimization
eliminates the need to duplicate scalar operations as
vector operations, thereby freeing up vector registers
and promoting increased parallelism.

3. We ported Intel’s SIMD outer loop optimization for
loops in series #1[2] to support RVV features, such as
introducing VP execution in VPlan to eliminate tail
loop. The importance of outer loop optimization is to
optimize memory access pattern, such as turning
stride memory access to unit-stride memory access.

We conducted benchmark tests of ZCC against widely-
used computer vision kernels, which were hand-optimized
using RVV built-ins and compiled with EPI LLVM
(version 9cfcff6873), LLVM 16, and GCC 12.2. As
illustrated in Figure 1, ZCC exhibits an average 18%
reduction in dynamic instruction count compared to hand-
written intrinsics and achieves a performance up to 100
times faster than that of EPI LLVM, LLVM, and GCC.

Figure 1. Relative dynamic instruction counts of 4 AI kernels running on
RV32IMCV ISA simulator, vlenb=512. Lower is better. Source code is

available at https://github.com/dodohack/rv_lib

Our compiler can successfully auto-vectorize outer loops
in correlation, psroi and wrap with the assistance of
"pragma" which indicates which level of loops should be
vectorized and ensures there is no memory overlap between
input and output buffers. Moreover, outer loop
vectorization may enhance memory access patterns in some
cases. For example, while profiling on FPGA, we observed
a 50% cycle count improvement in the correlation kernel
compiled by ZCC compared to the RVV intrinsic version,
even though the dynamic instruction count improvement
was only 8.5%. The resize kernel compiled by ZCC
exhibits almost a 100% dynamic instruction count
improvement over the RVV intrinsic version, as our

compiler can generate operations with twice the size of
register groups.

We also utilized SPECInt2006 to benchmark ZCC against
LLVM and GCC. As demonstrated in Figure 2, ZCC
exhibits a 30% improvement in dynamic instruction count
performance compared to LLVM on RV64GCBV. ZCC
still shows a 13% performance improvement compared to
LLVM on RV64GCB. The auto-vectorization feature in
ZCC contributes to an average performance gain of 17% in
SPECInt2006.

We were unable to evaluate the auto-vectorization
performance of LLVM and GCC on SPECInt2006, as both
compilers encountered crashes during the compilation of
some test cases when auto-vectorization was enabled.

Figure 2. Dynamic instruction counts of SPECInt2006, running on

RV64GCBV ISA simulator, vlenb=512. Lower is better.

Future work
The outer loop auto-vectorization implemented in ZCC is

still in its early stages. Outer loop vectorization can be
grouped into four series [2], but only series #1 has been
implemented in ZCC thus far, optimizations for series #2,
#3, #4 will be gradually implemented in ZCC.

Conclusion
ZCC has already shown great dynamic instruction count

improvements over upstream/commercial compilers. With
future work on target dependent optimization, ZCC can
substantially reduce the cost of maintaining AI kernels and
math libraries, ultimately accelerating the development of
DSA and HPC hardware and software.

 References
[1] https://repo.hca.bsc.es/gitlab/rferrer/llvm-epi

 [2] https://lists.llvm.org/pipermail/llvm-dev/2017-
December/119523.html

2.53%

2.54%

25.58%

63.03%

100.00%

1.00% 10.00% 100.00%

zcc

RVV Intrinsic

EPI LLVM

LLVM 16.0

GCC 12.2

psroi

1.09%

1.30%

4.74%

100.00%

9.04%

1.00% 10.00% 100.00%

zcc

RVV Intrinsic

EPI LLVM

LLVM 16.0

GCC 12.2

warp

1.45%

2.82%

6.39%

28.02%

100.00%

1.00% 10.00% 100.00%

zcc

RVV Intrinsic

EPI LLVM

LLVM 16.0

GCC 12.2

resize

1.17%

1.28%

7.06%

100.00%

16.12%

1.00% 10.00% 100.00%

zcc

RVV Intrinsic

EPI LLVM

LLVM 16.0

GCC 12.2

correlation

0%

20%

40%

60%

80%

100%

120%

47
3.a
sta
r

40
1.b
zip
2

40
3.g
cc

44
5.g
od
mk

46
4.h
26
4re
f

45
6.h
mm

er

46
2.l
ibq
ua
ntu
m

42
9.m

cf

47
1.o
mn
etp
p

40
0.p
erl
be
nch

45
8.s
jen
g

48
3.x
ala
ncb

mk

ge
om
ean

SPECInt2K6

llvm(RV64GCB) zcc(RV64GCB) zcc-vec(RV64GCBV)

