
Relocatable RISC-V Rust Applications
for Embedded Systems

Hugo McNally1, Luís Marques1 and Jorge Prendes1

1lowRISC CIC, Cambridge, United Kingdom

Abstract

The embedded position independent code (ePIC) ABI proposal offers a solution to the challenge of generating
relocatable applications for RISC-V embedded systems without an MMU. Having such an ABI is important for
enabling the dynamic loading of relocatable applications in the embedded RISC-V ecosystem. This unlocks the
full potential of secure platforms such as Tock, an operating system that builds on the Rust compiler guarantees
to help minimize the security vulnerabilities in embedded systems. This extended abstract outlines the unique
features of ePIC, particularly in comparison to the approaches used in non-embedded devices, and highlights its
significance for a secure Rust platform in embedded systems.

Introduction

The RISC-V ecosystem currently lacks an Applica-
tion Binary Interface (ABI) that adequately supports
relocatable applications for embedded systems. This
is because most embedded systems run applications
using both RAM and ROM memories (e.g. SRAM
and flash) and do not have a memory management
unit (MMU) due to their significant area and power
requirements. Adding support for application relo-
cation in such systems is challenging and can be ex-
pensive. A major cause of this difficulty comes from
not loading and relocating the entire application by a
fixed offset, but instead splitting the application be-
tween RAM and ROM at variable distances. This
is normally done because embedded systems tend to
have a small amount of RAM available, so to con-
serve it code will normally be executed in place, di-
rectly from ROM or flash. This invalidates several
existing approaches, such as the family of System V
ABIs, that assume that all global offset tables (GOT)
are at a known offset from the code and, with no
MMU, one cannot maintain the illusion of a fixed off-
set. Although the family of FDPIC ABIs should be
able to address this problem, there is no specification
of FDPIC for RISC-V and FDPIC is not necessar-
ily the best solution because it introduces significant
overheads when considered in the context of embed-
ded systems.

This limits the available software stacks on em-
bedded systems, because one cannot make full use
of operating systems that dynamically load applica-
tions at arbitrary addresses for improved memory ef-
ficiency. The embedded position independent code
(ePIC) ABI proposal [1] opens up embedded systems
to these software stacks, by providing relocatable ap-
plications with a minimal overhead and tailored to the
embedded use case.

ePIC

ePIC solves the problems of making applications re-
locatable by computing the addresses of application
symbols relative to a location in the code segment if
the symbol resides in the code segment or a location
in the data segment if the symbol resides in the data
segment. Calculating addresses relative to the seg-
ment a symbol lives in enables the two segments to be
relocated independently of one another, allowing ap-
plications to be stored in arbitrary flash locations and
their data loaded at arbitrary RAM locations. Note
that absolute addresses can still be used for memory
locations external to the application, such as when
accessing memory-mapped devices.

For addresses in the code segment, standard
RISC-V PC-relative addressing is used. However, as
the offset of the data section from the PC is not known
at link time, PC-relative addressing cannot be used
for the data section. Instead, ePIC addresses loca-
tions in the data segment relative to the global pointer
(GP), which is a pointer to a particular location in
the data segment. The linker designates this location
in the binary and the program loader will set the gp
register to the absolute address of the location once
the data segment has been relocated. The ABI regis-
ter name gp is usually specified as an alias to the x3
register.

The segment in which a symbol resides is not always
known at compile time. To ensure the relative address
can be calculated for all symbols in the application,
ePIC relies on an unconventional link-time mecha-
nism. This mechanism rewrites instructions that ad-
dress symbols whose residence is known only at static
link time.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1



Comparison to other Approaches

There are many existing approaches to solving the
application relocation problem. Two common mech-
anisms used for relocatable applications are dynamic
relocations and the global offset table (GOT).

When using dynamic relocations, the linker pro-
vides an additional relocation section in the binary
detailing the instructions and data which need to
be edited once the actual address locations of sym-
bols are known at program load time. The dynamic
linker/loader can then process the relocation section
and rewrite the instructions or data to use the cor-
rect addresses. The program is then able to run in
its new location. One drawback is the runtime cost
associated with rewriting instructions when loading
the program. Another drawback to this approach is
that the code segment has to be writable. This is not
ideal when the code segment is in flash, as it cannot
be written to like regular memory (without erasing
entire pages and causing excessive wear).

The System V ABI solves this issue by using a GOT
(one per shared object). The GOT has an entry for
each global symbol. The content of the entry (once
the program is loaded) is the absolute address of the
symbol. This means, with the location of the GOT
and the offset of a symbol’s entry in the GOT, the
address of the symbol can be found at runtime. The
GOT’s entries are populated when the physical ad-
dresses of symbols are known at load time. The GOT
lives in the data segment of the program, so that the
code segment can be read-only. This is great for when
one wants to run their program from flash.

However, the System V PIC ABI relies on a known
offset between the code and the GOT. Therefore, it
does not work for independently relocatable code and
data segments, where this offset is only known at load
time. File Descriptor PIC (FDPIC) solves this issue
by using the global pointer to point to the current
GOT. This means a known offset between segments
is not needed at link time, and so FDPIC could be
used for independently relocatable segments.

One reason ePIC is being proposed is that FDPIC
uses a GOT, which is not needed when shared library
support is not required. The GOT can take a non-
trivial amount of RAM space and introduces a run
time and code size cost due to the extra indirection
and table lookup. Given embedded environments are
often very resource restrained, these additional costs
are best avoided.

Motivation

The Rust language enforces more restrictions on what
a programmer can do compared to traditional low-

level languages, but in return these restrictions pro-
vide certain compiler-ensured guarantees of correct-
ness. For example, Rust’s borrow checker restricts
the programmer’s ability to reference memory loca-
tions, but in return the compiler can guarantee that
a number of types of memory management errors are
absent. Not only does this make the program more
reliable, it also prevents a variety of security issues.

However, not everything can be done with these re-
strictions in place, for example one can not access
memory-mapped devices. For situations like this,
Rust has an unsafe dialect, which allows one to do
anything one could in a language like C, such as
pointer arithmetic, and opens the door to all the un-
defined behaviour that results. In practice, unsafe
blocks clearly denote areas of the code which require
particularly thorough review.

Tock [2] is an OS built to capitalise on Rust’s cor-
rectness guarantees. It only uses the unsafe dialect
only where necessary in the kernel core and the core
is kept minimal with most functionality handled in
drivers (called capsules) or processes. This provides
correctness guarantees for most of the codebase.

Tock has many features expected from a modern
security conscious OS. For example, processes are pre-
emptively scheduled and isolated from one another us-
ing the Memory Protection Unit (MPU). The feature
of particular relevance to this paper is that processes
are dynamically created/destroyed at runtime, which
means processes can be compiled and signed sepa-
rately from the kernel. This allows applications to be
updated or replaced without having to recompile the
kernel. The code of the kernel is security critical be-
cause it runs in privileged machine mode and contains
some unsafe Rust. Only having to carry out a thor-
ough review of it when it changes, greatly reduces the
effort required to ensure a high level of security and
reliability. This is also a great assistance to projects
spanning multiple teams/organisations, since teams
can review and sign their applications individually.

However, it is not currently possible to write in Rust
Tock programs that can be relocated in both RAM
and ROM because the LLVM RISC-V backend only
supports the RISC-V System V ABI, which assumes
in its design a single relocation offset (or an MMU
that can hide additional offsets). ePIC would solve
this, making them more reliable and secure thanks to
Rust’s correctness guarantees.

References

[1] lowRISC. ePIC Specification. https : / / github . com /
luismarques/epic-spec/blob/main/epic.adoc. 2022.

[2] The Tock Project Developers. Tock OS. https://github.
com/tock/tock. 2023.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://github.com/luismarques/epic-spec/blob/main/epic.adoc
https://github.com/luismarques/epic-spec/blob/main/epic.adoc
https://github.com/tock/tock
https://github.com/tock/tock

	Introduction
	ePIC
	Comparison to other Approaches
	Motivation

