
Relocatable RISC-V Rust Applications
for Embedded Systems Hugo McNally <hugom@lowrisc.org>

Luís Marques <luismarques@lowrisc.org>

int get_x() {
 return x;
}

lui a0, %hi(x)
lw a0, %lo(x)(a0)
ret

1: auipc a0, %got_pcrel_hi(x)
 lw a0, %pcrel_lo(1b)(a0)
 lw a0, 0(a0)
 ret

lui a0, %gprel_got_hi(x)
add a0, gp, a0
lw a0, %gprel_got_lo(x)(a0)
lw a0, 0(a0)
ret

Data Segment

Text Segment

GOT

Text Segment

Problem

The RISC-V ecosystem currently lacks an Application
Binary Interface (ABI) that adequately supports common
requirements for relocatable applications
in embedded systems.

The existing RISC-V System V ABI does not allow
satisfying all of these at the same time, as it assumes
the use of a single relocation o�set (base address) for
the entire application.

Requirements:
• No Memory Management Unit (MMU)
• Execute In Place (XIP)
• RAM and ROM segments can be relocated independently

RISC-V Absolute Addressing

If the address of x is independent of application position, e.g. it's a memory-
mapped device, one can continue to use absolute addressing.

The following assembly
examples are implementations
of this C function, where x is a
global variable.

Examples

The ePIC Spec

RISC-V System V ABI

The System V ABI enables creating relocatable
applications. For RISC-V, this is typically done by using
PC-relative addressing when x is within 2 GiB of the PC
and by using a Global O�set Table for when x is not local
(preemptible).

ROM

RAM

}
}
{{
{Data Segment

GOT

FDT

Application Binary
Memory

Memory

The GOT is filled with the absolute address of each
global (preemptible) symbol by the application loader.
It's position is known relative to the PC.

Possible RISC-V FDPIC ABI

FDPIC allows the text and data segments to be
independently relocatable, by reserving a register, the
global pointer (GP), to point to a known position in the
data segment. This means the GOT can be found
relative to the GP and not the PC.

With this ABI, PC-relative addressing or GP-relative
addressing can be used when x is a local symbol. It
must be within 2 GiB of the PC or GP.

When x is external (preemptible), the address can be
computed using the GOT.

The Rust Language enforces more restrictions than are
common in systems level languages, but these
restrictions provide guarantees of correctness from the
compiler. These correctness guarantees greatly reduce
security risks.

Tock OS is an Operating System built to capitalise on
these features. It only opts out of these restrictions
(using the unsafe dialect) where it is necessary in the
core of the kernel. Most functionality is managed in
Capsules (Drivers) which have the restrictions enforced.
Processes are dynamically loaded by the kernel. They
are isolated using the MPU and scheduled preemptively
to have stronger system liveness guarantees.

The Motivation behind ePIC

Processes being dynamically loadable allows
them to be built, signed and updated
separately from the kernel.

Tock OS allows multiple applications to be
loaded at the same time. Because there is no
MMU, to make sure applications don't collide
with one another, they have to be relocatable.

ePIC enables e�cient relocatable applications
for Tock OS that can be written in Rust to take
full advantage of its correctness guarantees.

The Proposed ePIC ABI

The proposed ePIC ABI uses a combination of PC- and GP-
relative addressing, similar to FDPIC local addressing.
Since we do not require shared library support, we can
avoid paying for the cost of the GOT, used for external
(preemptible) data addressing.

Sometimes only the linker knows whether a symbol will
reside in the text segment or data segment. For these
situations ePIC has instruction-rewriting relocations,
allowing the linker to select between PC-Relative or GP-
relative addressing depending on the symbol's segment.

Why ePIC is being proposed over potential alternatives such as an FDPIC-style ABI

Access Cost: PC-relative and GP-relative accesses are cheaper than GOT based accesses. Compare the instruction
sequences' lengths, noting the additional load instruction.

Simplicity: The full generality and cost of FDPIC is not needed, as support for shared libraries is not required.

Start-up Cost: FDPIC requires the GOT to be filled by the loader at load time, increasing the startup time.

Why can't the System V ABI be used?

Although using the GOT solves the problem
of having independently relocatable text
and data segments, the ABI relies on the
GOT itself being at a known o�set relative
to the PC, which means the text and data
segments cannot be independently
relocated. FDPIC Style ABIs solve this.

Memory Usage: FDPIC uses a GOT which has an entry for each global symbol. This costs one word per entry (R̀V32).

GP

PC

PC

PC

GP

HAL Scheduler Config

SP
I

Pr
oc

es
s

Pr
oc

es
s

Pr
oc

es
s

U
A

R
T

SP
I

Ti
m

er

G
PI

O

Independently Relocatable Segments

Possible FDPIC ABI Proposed ePIC ABI

1: auipc a0, %pcrel_hi(x)
 lw a0, %pcrel_lo(1b)(a0)
 ret

1:
auipc a0, %pcrel_hi(x)
nop // can be removed
lw a0, %pcrel_lo(1b)(a0)
ret

RISC-V PC-Relative Addressing

If x is within 2 GiB of the PC, PC-relative addressing can be used. This is
because the o�set from the PC is independent of the application position.

lui a0, %gprel_hi(x)
add a0, gp, a0
lw a0, %gprel_lo(x)(a0)
ret

lui a0, %gprel_hi(x)
add a0, gp, a0
lw a0, %gprel_lo(x)(a0)
ret

RISC-V GP-Relative Addressing

GP-relative addressing can be used when x
is within 2 GiB of the global pointer (GP).

1: lui a0, %epic_hi(x)
 add a0, gp, a0, %epic_base_add(x)
 lw a0, %epic_lo(1b)(a0)
 ret

Data Segment

Text Segment

GOT

Text Segment

Data Segment

Memory

O�sets maintained
when relocated

The System V ABI
assumes a single

base address.

Tock OS Architecture

Capsules

Ke
rn

el

Core

The Security Tock OS

https://github.com/luismarques/epic-spec/blob/main/epic.adoc
https://github.com/luismarques/epic-spec/blob/main/epic.adoc

