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Abstract 

This extended abstract is submitted as a poster submission for the RISC-V Summit Europe, Barcelona, 5th-9th 

June 2023. It is assumed that the reader has a basic understanding of RISC-V and computer architecture. The 

poster aims to be a primer into virtual machines on RISC-V from a hardware/software co-design perspective. It 

introduces virtual machines and the associated software concepts. The poster closes by analysing two virtual 

machine topics that are critical to the commercial success of RISC-V and how they might be addressed in 

hardware and software. 

Introduction 

Virtualization is a critical technology for modern 

computing, allowing multiple operating systems and 

applications to run simultaneously on a single physical 

machine. Virtual machines have become increasingly 

popular due to their benefits, such as increased hardware 

utilization, enhanced security, and easier deployment of 

complex software stacks. RISC-V is an open-source 

Instruction Set Architecture (ISA) that has been gaining 

popularity in recent years due to its simplicity, modularity, 

and extensibility. This poster presents an overview of virtual 

machines, describes the current state of virtual machines on 

RISC-V and the critical challenges around implementing 

virtual machines on RISC-V. This poster focuses primarily 

on ISA emulation and there are undoubtedly opportunities to 

extend this to traps, OS emulation and multi-processor 

virtualization. 

Overview of Virtual Machines 

A virtual machine is a software emulation of a computer 

system, providing a virtual environment that behaves as if it 

were a physical machine. A virtual machine is a very broad 

topic and covers a wide range of implementations from 

interpreters (e.g. Perl), binary translators (e.g. Rosetta), 

high-level language virtual machines (e.g. JVM, Android) to 

full system virtual machines (e.g. Oracle VM Server). There 

are some common characteristics of all these virtual 

machines which will be used to discuss the state of virtual 

machines on RISC-V. 

 

ISA emulation is a key aspect of many virtual machines 

in that they must support executing a program binary built 

for a different ISA than the host machine (e.g. an x86 binary 

running on an Apple MacBook M1).  

 

Interpreting is the process of emulating the complete 

architected state of a source ISA or bytecode on a host 

machine. Interpreting is slow as it requires conversion of 

source ISA or bytecode at runtime but is still commonly use 

in virtual machines due to its fast start-up performance. 

Binary translation and dynamic binary optimization are used 

on subsequent passes of the code. 

 

Binary Translation is the process of converting a source 

binary program into a target binary program. This can offer 

significant speedups over interpreters but requires increased 

startup time for initial translation and increased memory for 

storing translated code into a code cache. Therefore, it’s 

common to perform a first pass interpretation while 

translating and optimizing the incrementally. 

 

Dynamic Binary Optimization is the process of 

identifying frequently executed (hot) code regions via 

dynamic profiling. Code regions identified as hot will 

undergo further optimizations as the cost of optimization is 

likely to be amortized over frequent runs. This relies on both 

hardware and software profiling features at runtime. 

 

State Mapping is the process of mapping source ISA 

registers to target ISA registers and/or memory. Depending 

on the similarity of the ISAs and the number of registers in 

each, the state mapping can be a cause significant overhead 

due to spill and fill of the registers into memory. 

Virtual Machines Critical to Success 

Virtual machines are going to be critical to the commercial 

success of RISC-V. Parallels can be drawn with Arm’s 

success in the laptop and consumer markets via Apple and 

Android respectively. 

Apple has reported 70% year-on-year grown in Q2 2021 

MacBook sales which is largely correlated with the release 

of Arm based MacBooks, without emulation this would have 

been impossible as it eased the software / hardware transition 

from x86 based MacBooks. The majority of software written 

for MacBooks targets x86-64 and therefore to support this 

software, Apple developed a dynamic binary translator 

named Rosetta 2. In-order for RISC-V to be successful in 

laptops, a dynamic binary translator with equivalent 

performance and compatibility is likely required. This 

highlights the importance of emulating the x86 ISA on 

RISC-V hardware and hence will be focus of the following 
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section. At present there are a number of open-source and 

commercial efforts to produce an x86 binary translator for 

RISC-V and an analysis of this landscape would be an 

interesting exercise for future work. 

If the move to Arm based laptops continues, then the 

emulation of aarch64 on RISC-V is likely to be of equal 

importance in the future but is not a focus of this poster. 

Android on RISC-V has been much talked about in recent 

years, with Alibaba making a lot of progress in porting 

Android to RISC-V and Google announcing their desire to 

make RISC-V a “tier 1 platform” on Android. Given 

Android’s increasing ubiquity in consumer devices such as 

digital TV, smarthubs and mobiles. RISC-V needs to port a 

performant and standardized version of Android to penetrate 

these markets. In-order to do this a solution to RISC-V’s lack 

of instruction and data consistency is required.   

Emulating x86 on RISC-V 

Emulating a CISC ISA binary, such as x86, on a RISC ISA 

host machine, such as RISC-V, is much preferred than the 

inverse. Complex instructions can be broken down into their 

constituent simple RISC instructions. For example, a single 

x86 load and add instruction can be broken down into 

separate RISC-V load and add instructions. 

The number of general-purpose registers is important in 

ISA emulation for determining the overhead of state 

mapping. RV64I implements 31 general purpose registers 

(x1-31), a zero register (x0) and a dedicated program counter 

(pc). x86-64 implements 16 general purpose registers 

(including stack pointers, link register) and a dedicated 

program counter (IP). Therefore, it’s possible to map most 

x86-64 registers directly to RV64I registers with spare 

registers to be used by emulation code. This will minimize 

the spills and fills needed during emulation. 

A notable omission from the RISC-V ISA are condition 

codes and these will present a challenge when emulating x86 

code on RISC-V. x86 implements condition codes that are 

implicitly updated as the side effect of many instructions. 

The lack of condition codes in RISC-V means x86 condition 

codes will need to be emulated when performing arithmetic 

instructions which is a significant overhead. A common 

optimization that can reduce this overhead is lazy evaluation 

which exploits the fact that condition codes are rarely used 

and therefore only evaluated at the point they are consumed.  

x86 supports total store ordering (TSO) where broadly 

speaking it implements a strongly ordered memory model 

with the allowance for local store buffers (giving 

significantly improved store performance). RISC-V (and 

Arm for that matter) implement a weak memory ordering 

model (WMO) which does not maintain the same guarantees 

as TSO but allows for even further optimizations in 

hardware. Emulating TSO on hardware supporting WMO 

comes at a significant performance penalty due to the 

number of memory fences needed to achieve strongly 

ordered guarantees. Therefore, Apple M1 has implemented 

TSO in hardware to achieve better emulated x86 

performance. The extensibility of RISC-V allows for TSO to 

be natively implemented in hardware (Ztso) and 

implementations hoping to performantly emulate x86 should 

include this extension. 

Fortunately for RISC-V, it supports the same endianness 

as x86 (little-endian) which can cause major headaches for 

emulation as was seen in Rosetta 1 when emulating 

PowerPC (big-endian) apps on x86 (little-endian). 

Other notable areas that need to be considered but have not 

as part of this extended abstract are FP formats, atomics, 

memory management, memory protection, memory 

addressing and memory alignment. 

Instruction & Data Consistency 

There are countless reasons a virtual machine would desire 

to modify its instruction memory at runtime. For example, 

binary translations maintain a code cache for translated 

blocks of code in memory which cannot practically contain 

all translated code due to memory size limitations. These 

code caches are flushed, most commonly when full or in 

some form of FIFO mechanism. 

Alternatively, on interrupts that cause transitions back to 

the host, the guest application must take the interrupt at a 

point where architectural state is as if it were running 

natively and service the interrupt in a reasonable time. The 

translated code, often executed as superblocks, may need to 

be modified to more quickly reach an interruptible state. 

Therefore, processors must keep an up-to-date view of 

instruction memory in order to correctly execute the virtual 

machine.  

The RISC-V ISA intends to support implementations with 

incoherent instruction caches, post I-cache buffering and 

execution pipe containing fetch instructions. Therefore, the 

lack of a ratified instruction / data consistency extension 

(e.g. Zjid) and it’s omission from the RVA23 profile is a 

limitation for RISC-V implementations hoping to run virtual 

machines performantly without the overhead of full 

hardware instruction / data coherency, note that even on 

these machines a subset of the Zjid extensions are required. 

The overhead of instruction/data coherency would likely 

be a significant area cost in the highly area / cost sensitive 

implementations in embedded consumer devices such as 

digital which Android is ever gaining popularity in. 

Admittedly, as implementations scale to larger multi-core 

systems, e.g. server cores, the cost of instruction / data 

coherency hardware is likely preferred over tracking data to 

the point of coherency for all cores via the Zjid extension. 
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