
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Virtual Machines on RISC-V
Jack Andrew1

1Imagination Technologies Ltd

Abstract

This extended abstract is submitted as a poster submission for the RISC-V Summit Europe, Barcelona, 5th-9th

June 2023. It is assumed that the reader has a basic understanding of RISC-V and computer architecture. The

poster aims to be a primer into virtual machines on RISC-V from a hardware/software co-design perspective. It

introduces virtual machines and the associated software concepts. The poster closes by analysing two virtual

machine topics that are critical to the commercial success of RISC-V and how they might be addressed in

hardware and software.

Introduction

Virtualization is a critical technology for modern

computing, allowing multiple operating systems and

applications to run simultaneously on a single physical

machine. Virtual machines have become increasingly

popular due to their benefits, such as increased hardware

utilization, enhanced security, and easier deployment of

complex software stacks. RISC-V is an open-source

Instruction Set Architecture (ISA) that has been gaining

popularity in recent years due to its simplicity, modularity,

and extensibility. This poster presents an overview of virtual

machines, describes the current state of virtual machines on

RISC-V and the critical challenges around implementing

virtual machines on RISC-V. This poster focuses primarily

on ISA emulation and there are undoubtedly opportunities to

extend this to traps, OS emulation and multi-processor

virtualization.

Overview of Virtual Machines

A virtual machine is a software emulation of a computer

system, providing a virtual environment that behaves as if it

were a physical machine. A virtual machine is a very broad

topic and covers a wide range of implementations from

interpreters (e.g. Perl), binary translators (e.g. Rosetta),

high-level language virtual machines (e.g. JVM, Android) to

full system virtual machines (e.g. Oracle VM Server). There

are some common characteristics of all these virtual

machines which will be used to discuss the state of virtual

machines on RISC-V.

ISA emulation is a key aspect of many virtual machines

in that they must support executing a program binary built

for a different ISA than the host machine (e.g. an x86 binary

running on an Apple MacBook M1).

Interpreting is the process of emulating the complete

architected state of a source ISA or bytecode on a host

machine. Interpreting is slow as it requires conversion of

source ISA or bytecode at runtime but is still commonly use

in virtual machines due to its fast start-up performance.

Binary translation and dynamic binary optimization are used

on subsequent passes of the code.

Binary Translation is the process of converting a source

binary program into a target binary program. This can offer

significant speedups over interpreters but requires increased

startup time for initial translation and increased memory for

storing translated code into a code cache. Therefore, it’s

common to perform a first pass interpretation while

translating and optimizing the incrementally.

Dynamic Binary Optimization is the process of

identifying frequently executed (hot) code regions via

dynamic profiling. Code regions identified as hot will

undergo further optimizations as the cost of optimization is

likely to be amortized over frequent runs. This relies on both

hardware and software profiling features at runtime.

State Mapping is the process of mapping source ISA

registers to target ISA registers and/or memory. Depending

on the similarity of the ISAs and the number of registers in

each, the state mapping can be a cause significant overhead

due to spill and fill of the registers into memory.

Virtual Machines Critical to Success

Virtual machines are going to be critical to the commercial

success of RISC-V. Parallels can be drawn with Arm’s

success in the laptop and consumer markets via Apple and

Android respectively.

Apple has reported 70% year-on-year grown in Q2 2021

MacBook sales which is largely correlated with the release

of Arm based MacBooks, without emulation this would have

been impossible as it eased the software / hardware transition

from x86 based MacBooks. The majority of software written

for MacBooks targets x86-64 and therefore to support this

software, Apple developed a dynamic binary translator

named Rosetta 2. In-order for RISC-V to be successful in

laptops, a dynamic binary translator with equivalent

performance and compatibility is likely required. This

highlights the importance of emulating the x86 ISA on

RISC-V hardware and hence will be focus of the following

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

section. At present there are a number of open-source and

commercial efforts to produce an x86 binary translator for

RISC-V and an analysis of this landscape would be an

interesting exercise for future work.

If the move to Arm based laptops continues, then the

emulation of aarch64 on RISC-V is likely to be of equal

importance in the future but is not a focus of this poster.

Android on RISC-V has been much talked about in recent

years, with Alibaba making a lot of progress in porting

Android to RISC-V and Google announcing their desire to

make RISC-V a “tier 1 platform” on Android. Given

Android’s increasing ubiquity in consumer devices such as

digital TV, smarthubs and mobiles. RISC-V needs to port a

performant and standardized version of Android to penetrate

these markets. In-order to do this a solution to RISC-V’s lack

of instruction and data consistency is required.

Emulating x86 on RISC-V

Emulating a CISC ISA binary, such as x86, on a RISC ISA

host machine, such as RISC-V, is much preferred than the

inverse. Complex instructions can be broken down into their

constituent simple RISC instructions. For example, a single

x86 load and add instruction can be broken down into

separate RISC-V load and add instructions.

The number of general-purpose registers is important in

ISA emulation for determining the overhead of state

mapping. RV64I implements 31 general purpose registers

(x1-31), a zero register (x0) and a dedicated program counter

(pc). x86-64 implements 16 general purpose registers

(including stack pointers, link register) and a dedicated

program counter (IP). Therefore, it’s possible to map most

x86-64 registers directly to RV64I registers with spare

registers to be used by emulation code. This will minimize

the spills and fills needed during emulation.

A notable omission from the RISC-V ISA are condition

codes and these will present a challenge when emulating x86

code on RISC-V. x86 implements condition codes that are

implicitly updated as the side effect of many instructions.

The lack of condition codes in RISC-V means x86 condition

codes will need to be emulated when performing arithmetic

instructions which is a significant overhead. A common

optimization that can reduce this overhead is lazy evaluation

which exploits the fact that condition codes are rarely used

and therefore only evaluated at the point they are consumed.

x86 supports total store ordering (TSO) where broadly

speaking it implements a strongly ordered memory model

with the allowance for local store buffers (giving

significantly improved store performance). RISC-V (and

Arm for that matter) implement a weak memory ordering

model (WMO) which does not maintain the same guarantees

as TSO but allows for even further optimizations in

hardware. Emulating TSO on hardware supporting WMO

comes at a significant performance penalty due to the

number of memory fences needed to achieve strongly

ordered guarantees. Therefore, Apple M1 has implemented

TSO in hardware to achieve better emulated x86

performance. The extensibility of RISC-V allows for TSO to

be natively implemented in hardware (Ztso) and

implementations hoping to performantly emulate x86 should

include this extension.

Fortunately for RISC-V, it supports the same endianness

as x86 (little-endian) which can cause major headaches for

emulation as was seen in Rosetta 1 when emulating

PowerPC (big-endian) apps on x86 (little-endian).

Other notable areas that need to be considered but have not

as part of this extended abstract are FP formats, atomics,

memory management, memory protection, memory

addressing and memory alignment.

Instruction & Data Consistency

There are countless reasons a virtual machine would desire

to modify its instruction memory at runtime. For example,

binary translations maintain a code cache for translated

blocks of code in memory which cannot practically contain

all translated code due to memory size limitations. These

code caches are flushed, most commonly when full or in

some form of FIFO mechanism.

Alternatively, on interrupts that cause transitions back to

the host, the guest application must take the interrupt at a

point where architectural state is as if it were running

natively and service the interrupt in a reasonable time. The

translated code, often executed as superblocks, may need to

be modified to more quickly reach an interruptible state.

Therefore, processors must keep an up-to-date view of

instruction memory in order to correctly execute the virtual

machine.

The RISC-V ISA intends to support implementations with

incoherent instruction caches, post I-cache buffering and

execution pipe containing fetch instructions. Therefore, the

lack of a ratified instruction / data consistency extension

(e.g. Zjid) and it’s omission from the RVA23 profile is a

limitation for RISC-V implementations hoping to run virtual

machines performantly without the overhead of full

hardware instruction / data coherency, note that even on

these machines a subset of the Zjid extensions are required.

The overhead of instruction/data coherency would likely

be a significant area cost in the highly area / cost sensitive

implementations in embedded consumer devices such as

digital which Android is ever gaining popularity in.

Admittedly, as implementations scale to larger multi-core

systems, e.g. server cores, the cost of instruction / data

coherency hardware is likely preferred over tracking data to

the point of coherency for all cores via the Zjid extension.

References

[1] J. E. Smith and R. Nair. Virtual Machines: Versatile

Platforms for Systems and Processes. Morgan Kaufmann

Publishers, 2022.

[2] D. Williams, G. Magklis, M. Maas and P. Loewenstein.

Instruction/Data (I/D)) consistency proposal for RISC-V.

