
Porting ROOT and Cling to RISC-V
Jonas Hahnfeld1∗

1CERN EP-SFT, Esplanade des Particules 1, 1211 Geneva 23, Switzerland

Abstract

The ROOT data analysis framework is used to analyze exabytes of data in the domain of High Energy
Physics (HEP). One critical ingredient is its interactive C++ interpreter Cling, powering many areas of
ROOT from the IO layer to interoperability with Python. Outside of HEP, Cling is also used to provide the
C++ kernel for Jupyter notebooks. The interpreter is built on top of LLVM and Clang and uses just-in-time
compilation (JIT) to emit and execute native machine code. In this contribution, we describe the work required
to port ROOT and Cling to the RISC-V architecture. We describe the changes needed to run a first physics
analysis and put special emphasis on the particularities for supporting RISC-V’s modular ISA design.

Introduction

The ROOT data analysis framework [1] is widely used
within the context of High Energy Physics (HEP). It
is used to store and analyze exabytes of data that is
produced during simulation and data taking in ex-
periments. For example, ROOT is currently used by
all experiments at the Large Hadron Collider (LHC),
hosted by CERN near Geneva.

One central component of the ROOT framework is
Cling, the interactive C++ interpreter built on top
of LLVM and Clang [2]. It is critical to a number of
areas within the framework: The IO layer queries the
interpreter to obtain information about class members
and their types. This allows to serialize data into a
columnar format that physicists will be able to read
back with future versions of ROOT.

Another important part of the framework that re-
lies on Cling is RDataFrame [3, 4]. It provides a
declarative interface for physics analyses and needs
type information about used data columns that may
only be available at runtime after opening input files.
Moreover, a significant part of its design is based on
just-in-time compilation (JIT) for performant filtering
and processing. Finally, Cling is also used to provide
interoperability between C++ and Python. For exam-
ple, ROOT allows users to instantiate templates from
Python, as well as calling C++ member functions.

At the time of writing, HEP computing resources
are mainly provided by x86, with some experiments
exploring ARM and PowerPC. RISC-V is a new in-
struction set architecture (ISA) and an open standard
that does not require paying licensing fees to use or de-
sign hardware. Because of that and as first hardware
is becoming available, RISC-V is currently gaining
traction in the open source world. In that context, we
describe porting ROOT and its Cling interpreter to
RISC-V to prepare for future experimentation.

∗Corresponding author: jonas.hahnfeld@cern.ch

LLVM JIT and clang-repl

As Cling is based on LLVM and Clang, we start porting
at the level of the JIT in LLVM’s main development
branch. We find that there already exists a JITLink
backend for RISC-V, which takes care of resolving relo-
cations in the JIT compiled code. After enabling this
JITLink backend by default for RISC-V and further
testing, we conclude that this area is already working
well for our purposes.

As the next step, we focus on clang-repl which are
generic parts of Cling being upstreamed into LLVM.
We again find that its basic operations already work
on RISC-V, but solve a problem specific to this new
architecture: RISC-V is a modular ISA that relies
on extensions to add support for floating point in-
structions. As a consequence, the set of extensions
also determines the available registers and the used
calling convention. In this case, Linux on RISC-V tar-
gets RV64GC and assumes support for double-precision
floating point, the D extension. Clang consequently
chooses the Application Binary Interface (ABI) lp64d
consistent with that. However, the LLVM backend
and code generation module complain that this ABI
cannot be used with the base ISA. To solve this, we
change clang-repl to propagate all assumed “target
features” from Clang to the LLVM backend.

ROOT and Cling

For porting ROOT and Cling, we first add support
for detecting RISC-V to ROOT’s build system and
configuration files. In addition, we need a version of
LLVM in ROOT that supports JIT compilation for
RISC-V. When starting our port, ROOT was still
based on LLVM 9 without the JITLink backend for
RISC-V described in the previous section. However,
there was work underway to upgrade to LLVM 13
which at least contained most of the base work for JIT

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:jonas.hahnfeld@cern.ch


compilation on RISC-V. For this reason, we base our
port on the version of ROOT making use of LLVM 131.

Still, it is necessary to backport a number of commits
from later versions of LLVM. We also need to apply the
changes described for clang-repl to the Cling code base.
Furthermore, in Cling we explicitly need to propagate
the computed ABI to the machine code generator.
Otherwise it will still pass floating point arguments
on the stack instead of in registers. This is different
from clang-repl which automatically propagates this
information based on a different code path in Clang.

Additionally, we find that compiling more com-
plex code makes wider use of compressed instruc-
tions. This requires additional relocations for com-
pressed branches and jumps, R_RISCV_RVC_BRANCH
and R_RISCV_RVC_JUMP. We implement support for
them locally in LLVM 13 and also contribute the
changes upstream.

First Physics Analysis

To test the port to RISC-V, we run some of the
RDataFrame tutorials available with the ROOT source
code. They document the most important features of
RDataFrame and their usage in simplified analyses.
Moreover, some tutorials are written directly in C++
while others use Python to call RDataFrame. This
means that we are able to test the interaction between
the two programming languages, which also relies on
Cling. We find that all tested tutorials, df10* and
higher, work without problems on RISC-V.

The most complex of these tutorials is
df103_NanoAODHiggsAnalysis.py. It implements
a simplified physics analysis in Python, but also
uses Cling to just-in-time compile a C++ header
file. The interpreted functions are then used to filter
events recorded with the CMS detector at the LHC
in 2011-2012, now publicly available on the CERN
Open Data Portal [5]. After filtering, the analysis
computes the invariant mass and plots the histogram
in Figure 1. The results show a bump at around 125
GeV, indicating the decay of the Higgs boson.

Conclusions and Future Work

In this contribution, we described our porting of ROOT
and Cling to RISC-V. We presented the required
changes in the involved software parts, in particu-
lar related to ISA extensions. To our knowledge, we
also presented the first physics analysis run on this
new architecture.

One feature that currently does not work on RISC-V
is exception support: If JIT compiled code throws an
1 The upgrade to LLVM 13 was merged into ROOT’s master

branch in December 2022.

80 100 120 140 160 180
 (GeV)4lm

0

2

4

6

8

10

12

14

16

18

E
ve

nt
s

N

Data

ZZ

 = 125 GeVHm

CMS Open Data -1 = 11.6 fb
int

 = 8 TeV, Ls

Figure 1: Output produced by the RDataFrame tutorial
df103_NanoAODHiggsAnalysis.py. It shows the invariant
mass of selected events with four leptons, indicating the
decay of the Higgs boson at a mass of mH = 125 GeV into
two Z bosons.

exception or an exception needs to be propagated
through interpreted frames, ROOT will terminate.
This can be solved by correctly registering the excep-
tion handling information with the unwinder, and we
plan to address this in the future.

Acknowledgment

The author would like to thank RISC-V International
and StarFive for providing a VisionFive V1 via the
RISC-V Developer Board program.

References

[1] Rene Brun and Fons Rademakers. “ROOT — An Object-
Oriented Data Analysis Framework”. In: Nuclear Instru-
ments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equip-
ment 389 (1997), pp. 81–86. doi: 10.1016/S0168-9002(97)
00048-X.

[2] Vassil Vassilev et al. “Cling – The New Interactive Inter-
preter for ROOT 6”. In: Journal of Physics: Conference
Series 396.5 (Dec. 2012), p. 052071. doi: 10.1088/1742-
6596/396/5/052071.

[3] Guilherme Amadio et al. “Novel functional and distributed
approaches to data analysis available in ROOT”. In: Jour-
nal of Physics: Conference Series 1085.4 (Sept. 2018),
p. 042008. doi: 10.1088/1742-6596/1085/4/042008.

[4] Danilo Piparo et al. “RDataFrame: Easy Parallel ROOT
Analysis at 100 Threads”. In: EPJ Web Conf. 214 (2019),
p. 06029. doi: 10.1051/epjconf/201921406029.

[5] Jomhari, Nur Zulaiha; Geiser, Achim; Bin Anuar, Afiq
Aizuddin; (2017). Higgs-to-four-lepton analysis example
using 2011-2012 data. CERN Open Data Portal. doi: 10.
7483/OPENDATA.CMS.JKB8.RR42.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1088/1742-6596/396/5/052071
https://doi.org/10.1088/1742-6596/396/5/052071
https://doi.org/10.1088/1742-6596/1085/4/042008
https://doi.org/10.1051/epjconf/201921406029
https://doi.org/10.7483/OPENDATA.CMS.JKB8.RR42
https://doi.org/10.7483/OPENDATA.CMS.JKB8.RR42

	Introduction
	LLVM JIT and clang-repl
	ROOT and Cling
	First Physics Analysis
	Conclusions and Future Work

