
CHERIoT: Rethinking Security
for Low-Cost Embedded Systems

Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel Filardo, Kunyan Liu, Robert
Norton-Wright, Yucong Tao, Robert N. M. Watson, Hongyan Xia – Microsoft

Presented by Jonathan Woodruff – University of Cambridge

Abstract

Small embedded cores have little area, power, or performance budget
to spare for security features and yet must often run code written in
unsafe languages and, increasingly, are exposed to the hostile
Internet. CHERIoT (Capability Hardware Extension to RISC-V for
Internet of Things) builds on top of CHERI and RISC-V1 to provide
an ISA and software model that lets software depend on
object-granularity spatial memory safety, deterministic use-after-free
protection, and lightweight compartmentalization exposed directly to
the C/C++ language model2,3. This can run existing embedded
software components on a clean-slate RTOS that scales up to large
numbers of isolated (yet securely communicating) compartments,
even on systems with under 256 KiB of SRAM.

CHERIoT-Ibex Implementation
CHERIoT-Ibex is an open-source RTL implementation of
CHERI ISA based on LowRISC's Ibex
core4(https://github.com/microsoft/cheriot-ibex). CHERIoT-Ibex is
a 32-bit RISC-V microcontroller which implements the
CHERIoT ISA extension in addition to RV32IMCB. As with
the original ibex core, the design can be configured with either
a 2-stage or a 3-stage pipeline.

CHERI-Ibex supports all 30 instructions listed in the
CHERIoT ISA specification, including those to query and test
capabilities, load/store capabilities from memory, control
program flow and access special capability registers. Certain
compressed instructions are also extended for capabilities,
including c.incaddr, c.jal, c.jalr. The RV64 c.ld and c.sd
instructions are repurposed for c.clc and c.csc instructions.

The CHERIoT-Ibex implementation extends a configurable
number of the general purpose registers into CHERI
capabilities. CHERIoT-Ibex extends its data bus to 33-bit,
where the MSB 1-bit is used as a valid tag to differentiate
between capabilities and data. The load-store unit also
supports atomic capability load and store transactions.
CHERIoT-Ibex also adds Special Capability Registers (SCRs)
including MTCC (replacing mtvec) and MEPCC (replacing
mepc).

CHERIoT-Ibex performs capability-based memory access rule
checking including:

● data load/store accesses
● capability load/store accesses
● Instruction fetch (PCC-based)
● jump target calculation (cjal and cjalr)
New capability exceptions are generated in the case of access
rule violations.

Temporal memory safety support
The CHERIoT load-capability instruction provides a
sophisticated filter to accelerate temporal memory safety.
When loading a valid pointer to heap memory, the instruction
checks a shadow memory with a bit for each heap granule (8
bytes currently). The tag bit of the loaded capability is cleared
if the shadow bit of memory it points to is 1. These bits are set
by the RTOS's heap allocator on deallocation to ensure that
stale capabilities are not propagated in the system before a
memory sweep can remove them from memory in preparation
for reuse.

Backward compatibility
CHERIoT-Ibex provides a backward-compatibility mode that
can be set on startup. In this mode, the CHERIoT instructions
can still execute, however access rules are disabled and any
binary code generated by non-CHERI RV32 compilers can run
unmodified in CHERIoT-Ibex.

Timing and area
CHERI-ibex (with 3-stage pipeline) has been synthesized at
330MHz using TSMC 28nm HPC+ libraries (HVT only) and >
1GHz using TSMC n5 libraries (SVT only). The design size is
~70k gate equivalents. A detailed PPA analysis is under way at
Microsoft.

CHERIoT Sail: Formal Specification
Our team has adapted the CHERI-RISC-V Sail executable
formal model to describe CHERIoT
(https://github.com/microsoft/cheriot-sail). This executable
description of the CHERIoT instruction set is the gold
standard for the ISA. It simultaneously provides

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1



human-readable documentation in our technical report,
compiles into our reference simulator, and facilitates proof of
ISA properties using formal analysis.

The Sail compiler can translate Sail code into a Satisfiability
Modulo Theories (SMT) problem that can be given to a solver
such as CVC4 or Z3 to check whether a given function returns
true for all input values. We have used this feature to check
important properties of the capability encoding as
implemented in Sail, including the following representative
examples:

prop_andperms checks that any capability and permissions
mask CAndPerm will result in a capability whose
permissions are a subset of the original permissions and the
mask. This is non-trivial on CHERIoT due to its novel
compression of the permissions field.

prop_setbounds_monotonic checks monotonicity
preservation of setCapBounds, despite rounding.

prop_repbounds checks that the limits of representability
as the address strays out of bounds match expectations
from the encoding.

CHERIoT RTOS and software stack
The CHERIoT RTOS research platform has also been
open-sourced to enable wider collaboration
(https://github.com/microsoft/cheriot-rtos). The CHERIoT
platform is designed around the principles of least privilege
and intentionality. As such, the structure is somewhat different
from a conventional OS or RTOS. Particularly central to the
architecture are the notions of memory safety, compartments,
and threads.

A system is said to be memory safe if its references to
memory are:

● Unforgeable: A reference to memory (in particular, the
authority to access memory) can be constructed only
from other references.

● Monotonic: A constructed reference will have no more
authority than its progenitor reference(s) (and may have
less).

● Spatially Safe: References to memory authorize access to
a set of memory locations determined when the reference
is constructed.

● Temporally Safe: References to a region of memory will
not remain usable across reuse of memory for a different
allocation.

Compartments define spatial ownership. A compartment
defines a set of code, globals, exported entry points, imported
entry points from other compartments, and imported
memory-mapped I/O (MMIO) regions. A compartment is
treated as a single protection domain. While a compartment is
running, it is assumed to be able to execute any of its code,
modify any of its globals, access any of the MMIO regions
that it has access to, or transfer execution to any of the
compartments whose entry points it has imported.

Threads define temporal ownership. A thread defines a
register state (either in the register file while running, or in a
register save area when preempted), a stack, and a trusted
stack. Threads are always executing in one compartment and
that compartment has access to a subset of the stack The
trusted stack maintains a record of the compartments that a
thread has suspended by performing a cross-compartment call
and which will be resumed when those calls return. Each
cross-compartment call shrinks the stack so that all state
created by existing compartments is inaccessible to the new
callers.

Conclusion
The CHERIoT project would not have been possible without
the existing “big CHERI” research, exploration of green-field
CHERI-aware operating systems, and work to adapt CHERI
software models to embedded systems. This ISA attempts to
scale CHERI down yet further. For an optimal result, we have
simultaneously designed our ISA, compartment model,
programmer model, compiler, and RTOS. The capability
encoding and instruction set have also been tuned to this
use-case and validated by running existing embedded software
in compartments. We hope that the CHERIoT project will
motivate and inform the standardization of a CHERI extension
for RISC-V in embedded systems.

[1] Watson, Robert NM, et al. Capability hardware enhanced RISC
instructions: CHERI instruction-set architecture (version 7). No.
UCAM-CL-TR-927. University of Cambridge, Computer Laboratory,
2019.

[2] Davis, Brooks, et al. "CheriABI: Enforcing valid pointer
provenance and minimizing pointer privilege in the POSIX C
run-time environment." ASPLOS. 2019.

[3] Joly, Nicolas, Saif ElSherei, and Saar Amar. "Security analysis of
CHERI ISA." 2021.

[4] Lowrisc, IBEX documentation, Oct 2020,
https://ibexcore.readthedocs.io/en/latest

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023


