
VPSDK : a portability library for extended
arithmetic operations targetting a RISC-V

Variable eXended Precision accelerator.
Jerome Fereyre1, Alexandre Hoffmann1

1Univ. Grenoble Alpes, CEA, List
F-38000 Grenoble, France

Abstract

We develop a RISC-V based accelerator called VXP (Variable eXtended Precision). It provides an efficient way
to handle extended precision arithmetic operations. This helps to address convergence issues encountered using
linear algebras solvers for scientific applications. In the current work we introduce a library called VPSDK.
VPSDK is a general framework to develop application on this accelerated environment as well as in general
purpose architectures.

Introduction

Linear algebra kernels, such as linear solvers or eigen-
solvers, are ubiquitous in both scientific and industrial
applications. Theses kernels can be divided into two
categories, direct solvers and iterative solvers. Direct
solvers are usually faster but their memory require-
ment make them unusable for large problems. Iterative
solvers, such as Krylov solvers, are thus the preferred
choice for many industrial and scientific problems.

These methods are very sensitive to round-off errors,
which leads to numerical instabilities, slower conver-
gence, and, in some cases, divergence of the solver.

The convergence of iterative methods can be sped-up
by using a preconditioner. However, simple precondi-
tioners, such as Jacobi, often lead to limited speed-up.
Sophisticated preconditioners, such as incomplete LU,
lead to substential speedup, but are both computa-
tionally and memory intensive and require problem
specific tuning.
Alternatively, using extended precision limits the

impact of round-off errors and thus speed-up, and in
some cases enable, the convergence of iterative meth-
ods. Figure 1 shows how numerical precision can
speed-up the convergence of the BiConjugate Gradient
(BiCG) method. This solution is easier and more scal-
able but the lack of hardware support introduces a very
significant overhead. In our experiment a peak speed
up of x800 may be provided by hardware supported
scalar operations versus software variable precsion li-
brary such as the Multiple Precision Floating-Point
Reliable (MPFR) library [1];

This motivated the development of the Variable eX-
tended Precision(VXP) (formerly called VRP) hard-
ware accelerator. The VXP is based on the RISC-V
Instruction Set Architecture (ISA), and provides hard-
ware support for extended precision floating point

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Precision

200

400

600

800

1000

1200

1400

1600

1800
Ite

ra
tio

ns
BiCG (270x270)

Iterations

Figure 1: BiConjugate gradient iteration count evolution
when increasing computing precision

numbers [2]. This support is provided through custom
ISA extensions for loading, storing and manipulating
extended precision numbers. This ISA implementation
was developped by extended the CVA6 RISC-V core,
adding a VPFPU which performs variable precision
computation.
In order to use this extended ISA, an additional

software layer is required. We provide a custom version
of the standard BLAS libraries that supports variable
precision hardware. We also provide a set of operators
for manipulating variable precision scalars.

Three workflows are available. First, it is possible to
compile code for RISC-V and to execute it on the VXP.
Secondly, it is possible to compile code for RISC-V
and to execute it on a standard Linux machine, on a
modified RISC-V Spike model. Finally, it is possible
to emulate variable precision using the GNU MPFR
library. The three workflows are represented in Figure
2. Both the second and third workflows allow one to
benefits variable precision even if the VXP hardware

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

is not available.

VPSDK overview and results

VPSDK is library composed by a set of C++ classes
providing a common interface to support run in two
environments. The first one uses MPFR as backend
for variable precision support, and the second one will
use the VXP accelerator.
This library defines a class called VPFloat that

handles scalar variable precision numbers. This
class provides operators for: simple arithmetic
operations(+,-,*,/), variable assignments operators
(=,+=,-=,*=,/=), and is used by additional functions
power(pow2), square root (sqrt).

User application

VPSDK

RISCV runtime

VPFloat / VBLAS interfaces

VXP Hardware

SW Emulation
(spike)

SW Emulation
(MPFR)

VXP assembly implementationMPFR implementation

Target host runnning Linux on X86,ARM,..

Figure 2: VPSDK use

A VPFloat object is declared with a triplet of in-
tegers: the size of the exponent, the total size of the
variable precision number in memory and a stride used
by hardware to deduce next VPFloat address in case
of sequential declaration.

Listing 1: VPFloat C code example
include <VPFloat . hpp>
using namespace VPFloatPackage ;

void main () {
// Matissa s i z e i s 128 b i t s
int p r e c i s i o n =128;
// Exponent s i z e i s 7 b i t s
int exponent_size=7;
// St r ide s i z e i s 1 v p f l o a t elements
int s t r i d e_s i z e = 1 ;
int n = 10 ;

int vpfloat_memory_size = p r e c i s i o n
+ exponent_size + s t r i d e ;

// Set the prec i s i on to use for f u r t h e r code
VPFloatComputingEnvironment : : s e t_prec i s i on (p r e c i s i o n) ;

// VPFloat array dec l a ra t i on
VPFloatArray r_k(exponent_size ,

vpfloat_memory_size ,
s t r i d e_s i z e ,
n) ;

// VPfloat s ca l a r dec l a ra t i on
VPFloat r s (exponent_size ,

vpfloat_memory_size , s t r i d e_s i z e) ;

r s = 10 . 0 ;

for (int i = 1 ; i <= n ; i++) {
r_k [i −1] = rs / (double) i ;

}
}

Listing 1 presents an example of C/C++ code using
the VPFloat++ interface
In addition to the scalar and array classes some

BLAS primitives are available in an additional mod-
ule called VBLAS. These functions that are available
for the VXP, and they are also available for MPFR.
Currently available functions are: vgemvd, vscal,
vcopy, vaxpy, vdot, vzero and correspond to their
BLAS counterparts.
Various linear algebra solvers such as Conjugate

Gradient (CG), and BiConjugate Gradient (BiCG),
were implemented using the VBLAS, making possible
to run them on our VXP accelerated platform or on
X86_64 platform with MPFR backend.

Future

Future work involves the consolidation of our SDK as
well as its extension to support the same features as
other linear algebra packages.

This new version will allow us to address more gen-
eral problems, like the Harmonic Wave Equation, on
which we are currently working.

We also plan to add libquad support, in order to
widen the the selection of variable precision software
solutions and to compare them to the VXP solution.
This library will be made available as open source,

as part of a TRISTAN European funded project.

Acknowledgements

This work has been performed in the context of the
EPI and TRISTAN projects. EPI has received funding
from the European Union’s Horizon research and in-
novation program under Grant Agreement EPI-SGA1:
826647. TRISTAN has received funding from the Key
Digital Technologies Joint Undertaking (KDT JU) un-
der Grant Agreement nr. 101095947.

References

[1] Laurent Fousse et al. “MPFR: A Multiple-Precision Binary
Floating-Point Library with Correct Rounding”. In: ACM
Trans. Math. Softw. 33.2 (June 2007), 13–es. issn: 0098-
3500. doi: 10.1145/1236463.1236468. url: https://doi.
org/10.1145/1236463.1236468.

[2] Y. Durand et al. “Accelerating Variants of the Conjugate
Gradient with the Variable Precision Processor”. In: 2022
IEEE 29th Symposium on Computer Arithmetic (ARITH).
Los Alamitos, CA, USA: IEEE Computer Society, Sept.
2022, pp. 51–57. doi: 10.1109/ARITH54963.2022.00017.
url: https://doi.ieeecomputersociety.org/10.1109/
ARITH54963.2022.00017.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1109/ARITH54963.2022.00017
https://doi.ieeecomputersociety.org/10.1109/ARITH54963.2022.00017
https://doi.ieeecomputersociety.org/10.1109/ARITH54963.2022.00017

	Introduction
	VPSDK overview and results
	Future
	Acknowledgements

