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Abstract 

There is a bewildering amount of number formats, particularly floating point ones. Each ISA will need to 
consider which to support. For RISC-V, we argue we need to consider supporting all, but ratify only a few; the 
ones that have become mainstream. Current ratified extensions of the RISC-V ISA suffices, with the exception 
of BF16 (Brain floating point format) support (and perhaps rising star FP8). Supporting BF16, however, is 
also not straightforward. We will identify several use cases; as a storage format, for efficient computations, 
and as an arithmetic format, and expose BF16 is not a standard, highlighting differences in implementations. 
For RISC-V support we need to balance flexibility with (hardware) efficiency and will recommend 
complementary extensions with the base supporting flushing subnormal numbers and round-to-zero. 

Introduction 

Since the rise of machine learning a myriad of number 
formats have been introduced aiming to improve the 
efficiency of training and inference. These in addition to 
the many historic number formats in existence, as well as 
number formats from other domains. Does RISC-V need to 
support the full landscape to be successful? On the integer 
side life simply consists of power of two in 2’s complement 
form (and perhaps fixed-point and binary coded decimal). 
On the floating point side things become more interesting. 
The RISC-V floating point special interest group (FP SIG 
[1]) has created a catalogue of known formats, extracting 
commonalities and identifying differences. This in turn 
raises interesting questions in how to support this diversity. 
We will quickly explore this landscape and summarise the 
finding in the next section. 

We will find we’re lacking support for the Brain floating 
point format (bFloat16/BF16), which is an increasingly 
important number format for AI applications, where it was 
realised that often you need the range of single precision 
floating point numbers but not the precision. BF16 is 
however not a standard format, not in the IEEE sense nor as 
a ratified RISC-V ISA extension. It does not even seem to 
be intended as a standard but rather as an internal 
optimisation. Yet there many implementations, including 
RISC-V implementations. Imagination Technologies as 
well has implemented support for BF16 in its real-time 
embedded CPU, the RTXM-2200, and is planning support 
for BF16 in its upcoming products. Again, we will explore 
the landscape, this time of use-cases and implementations. 

Finally, we will discuss our journey so far and suggest 
directions for the road ahead. 

Method and result 

The view 

As mentioned, a catalogue of (floating point) formats is 
created by the FP SIG [1]. This list is by no means 
exhaustive but has already identified over 50 formats. 

We can roughly classify these formats. The majority are 
based on the well-known IEEE 754 standard [2] with the 
formats consisting of a fixed-size logarithmic part 
(exponent) and a fixed-size linear part (fraction). Then 
there are tapered floating point formats aimed at increasing 
accuracy in the range near 1 and which have a variable 
width exponent and fraction [3], and specialised formats 
such as the LNS (logarithmic number system) format which 
has no linear part [4]. 

It is clear that IEEE-based formats are the primary 
candidate to support, but even for IEEE compliant numbers 
we have base 2 and base 10 variants, and there are already 
over ten IEEE-like formats focussed on AI applications. 

Everyone can choose to support their favourite format as 
a custom extension, however, so we argue we only need to 
support the mainstream formats as ratified extensions. The 
task then becomes to identify those that will become 
mainstream. 

Already defined by the RISC-V ISA are half (Zfh), single 
(F), double (D), and quad (Q) precision, with single and 
double precision clearly the most ubiquitous floating point 
formats in use. Decimal floating point is reserved but not 
yet defined. 

That roughly matches the support of other ISAs with one 
notable exception; BF16. That arguably makes BF16 a 
mainstream format (although it is perhaps too early to tell). 
Additionally, there is an IEEE standardisation effort on the 
way for FP8 (8-bit IEEE-like), so we recommend to closely 
follow and prepare for supporting that. 
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BF16 

The BF16 number format is developed by the Google 
Brain research team for deep learning applications. It is 
similar to single precision (F32) but with a smaller fraction, 
i.e. it is an IEEE-like format with a sign bit, 8 exponent 
bits, and 7 mantissa bits (instead of 23 in F32), meaning it 
has the same range but less precision. This smaller fraction 
significantly reduces the hardware cost of implementing 
arithmetic. A BF16 FMA, for example, is less than a 
quarter of the area of a F32 FMA. It was found that for AI 
applications the accuracy of F32 wasn’t needed and the 
area was better spend on increasing the number of 
operations per second achieved by using BF16. 

That isn’t the only use case however. We can identify 
three use cases for BF16: 

1. As a storage format. 
Memory bandwidth requirements can have a significant 

impact of performance. By storing data in BF16 format 
memory bandwidth is halved while the rest of the 
computation maintains accuracy. This only requires 
instructions for converting to and from BF16, or no 
hardware support at all if truncating and zero-extending. 

2. For efficient matrix computations 
By performing the multiplications in matrix operations 

with BF16 inputs but accumulating in F32 most of the 
accuracy is retained while also achieving most of the area 
(and bandwidth) savings. Typically, this requires a mixed-
precision (widening) FMA instruction. 

3. As an arithmetic format 
The full algorithm is now performed in BF16 for even 

further efficiency improvements. Generally this is 
supported by implementing all the same instructions other 
floating point formats provide. 

The most common use case is 2), supported for example 
by PyTorch or TensorFlow. There is also a use-case for 3) 
however. Both CUDA [5] and StableHLO/XLA [6] support 
BF16 as an arithmetic format. Internal analysis has shown a 
20 times smaller error rate than half precession numbers on 
some benchmarks giving results with less than 0.2% error 
rate differences against F32. 

It is recommended that these use cases are all supported 
as complementary extensions as currently planned. 

ISA support 

While most ISAs support BF16, it is not a standardised 
number format, i.e. it is not fully IEEE-compliant. 
Therefore implementations can differ. The differences seen 
are if subnormal numbers are supported or treated as zero 
(flushed), and what rounding modes are supported or used. 
As the format was developed by Google arguably their 
implementation could be considered the standard, and as 
we will see most ISAs follow their choices. 

Table 1 lists the instruction set, subnormal support, and 
rounding mode for the Google TPU [7], Intel AVX-
512_BF16 [8], Armv8.2-A [9], Armv8.2-A extended BF16 
support [9], and Nvidia Ampere tensor cores [10]. 

The Google and Intel implementations support 
conversions and FMA instructions, the others also support 
other matrix supporting operations like dot-products. Note 
that Google, Intel, and ARM flush subnormal numbers, but 
ARM has an option to make flushing selectable, while 
Nvidia always supports subnormals. There does not seem 
to be a clear consensus on the used rounding mode. 

Table 1: BF16 ISA support  
 
In general, we argue it is most compliant to flush 

subnormals and support RTZ rounding as the default. The 
lack of standardisation will require extension options 
enabling other choices however. 

Discussion 

In the RISC-V community we have an opportunity to 
carefully consider a well-designed and clean ISA. This 
requires considering all potential number formats to 
support. As will have become clear however, the valuable 
opcode space required for full support would be large. It is 
likely that wider standardised opcodes will be used 
eventually naturally allowing common and most often used 
instructions and number formats in narrower encodings and 
uncommon ones in wider encodings. The alternative would 
be using modes, i.e. CPU state, allowing e.g. the BF16 
instructions to use the same encoding as half precision but 
in a different mode. The advantage is avoiding wider 
instructions and thus larger binaries, but the disadvantage is 
less efficient execution when having to change mode. 

The BF16 use cases all have their place, care should 
therefore be taken in ensuring they are consistent. While 
the lack of standardisation is unfortunate and may require 
some configurability it should be noted that BF16 primarily 
is meant to improve area and efficiency hence such options 
should be judged in that light, favouring flushing and RTZ. 
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ISA Instr. Subnormal Rounding 

Google CNV, FMA flush ? 
Intel CNV, FMA flush RNE 
ARM CNV, FMA, MAT flush sel cnv, RTO 
ARM_E CNV, FMA, MAT sel sel 
Nvidia CNV, FMA, MAT support RTZ 


