
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

The landscape of RISC-V floating point support
with BF16 at the centre

Kenneth C. Rovers

CPU Architecture, Imagination Technologies

Abstract

There is a bewildering amount of number formats, particularly floating point ones. Each ISA will need to
consider which to support. For RISC-V, we argue we need to consider supporting all, but ratify only a few; the
ones that have become mainstream. Current ratified extensions of the RISC-V ISA suffices, with the exception
of BF16 (Brain floating point format) support (and perhaps rising star FP8). Supporting BF16, however, is
also not straightforward. We will identify several use cases; as a storage format, for efficient computations,
and as an arithmetic format, and expose BF16 is not a standard, highlighting differences in implementations.
For RISC-V support we need to balance flexibility with (hardware) efficiency and will recommend
complementary extensions with the base supporting flushing subnormal numbers and round-to-zero.

Introduction

Since the rise of machine learning a myriad of number
formats have been introduced aiming to improve the
efficiency of training and inference. These in addition to
the many historic number formats in existence, as well as
number formats from other domains. Does RISC-V need to
support the full landscape to be successful? On the integer
side life simply consists of power of two in 2’s complement
form (and perhaps fixed-point and binary coded decimal).
On the floating point side things become more interesting.
The RISC-V floating point special interest group (FP SIG
[1]) has created a catalogue of known formats, extracting
commonalities and identifying differences. This in turn
raises interesting questions in how to support this diversity.
We will quickly explore this landscape and summarise the
finding in the next section.

We will find we’re lacking support for the Brain floating
point format (bFloat16/BF16), which is an increasingly
important number format for AI applications, where it was
realised that often you need the range of single precision
floating point numbers but not the precision. BF16 is
however not a standard format, not in the IEEE sense nor as
a ratified RISC-V ISA extension. It does not even seem to
be intended as a standard but rather as an internal
optimisation. Yet there many implementations, including
RISC-V implementations. Imagination Technologies as
well has implemented support for BF16 in its real-time
embedded CPU, the RTXM-2200, and is planning support
for BF16 in its upcoming products. Again, we will explore
the landscape, this time of use-cases and implementations.

Finally, we will discuss our journey so far and suggest
directions for the road ahead.

Method and result

The view

As mentioned, a catalogue of (floating point) formats is
created by the FP SIG [1]. This list is by no means
exhaustive but has already identified over 50 formats.

We can roughly classify these formats. The majority are
based on the well-known IEEE 754 standard [2] with the
formats consisting of a fixed-size logarithmic part
(exponent) and a fixed-size linear part (fraction). Then
there are tapered floating point formats aimed at increasing
accuracy in the range near 1 and which have a variable
width exponent and fraction [3], and specialised formats
such as the LNS (logarithmic number system) format which
has no linear part [4].

It is clear that IEEE-based formats are the primary
candidate to support, but even for IEEE compliant numbers
we have base 2 and base 10 variants, and there are already
over ten IEEE-like formats focussed on AI applications.

Everyone can choose to support their favourite format as
a custom extension, however, so we argue we only need to
support the mainstream formats as ratified extensions. The
task then becomes to identify those that will become
mainstream.

Already defined by the RISC-V ISA are half (Zfh), single
(F), double (D), and quad (Q) precision, with single and
double precision clearly the most ubiquitous floating point
formats in use. Decimal floating point is reserved but not
yet defined.

That roughly matches the support of other ISAs with one
notable exception; BF16. That arguably makes BF16 a
mainstream format (although it is perhaps too early to tell).
Additionally, there is an IEEE standardisation effort on the
way for FP8 (8-bit IEEE-like), so we recommend to closely
follow and prepare for supporting that.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

BF16

The BF16 number format is developed by the Google
Brain research team for deep learning applications. It is
similar to single precision (F32) but with a smaller fraction,
i.e. it is an IEEE-like format with a sign bit, 8 exponent
bits, and 7 mantissa bits (instead of 23 in F32), meaning it
has the same range but less precision. This smaller fraction
significantly reduces the hardware cost of implementing
arithmetic. A BF16 FMA, for example, is less than a
quarter of the area of a F32 FMA. It was found that for AI
applications the accuracy of F32 wasn’t needed and the
area was better spend on increasing the number of
operations per second achieved by using BF16.

That isn’t the only use case however. We can identify
three use cases for BF16:

1. As a storage format.
Memory bandwidth requirements can have a significant

impact of performance. By storing data in BF16 format
memory bandwidth is halved while the rest of the
computation maintains accuracy. This only requires
instructions for converting to and from BF16, or no
hardware support at all if truncating and zero-extending.

2. For efficient matrix computations
By performing the multiplications in matrix operations

with BF16 inputs but accumulating in F32 most of the
accuracy is retained while also achieving most of the area
(and bandwidth) savings. Typically, this requires a mixed-
precision (widening) FMA instruction.

3. As an arithmetic format
The full algorithm is now performed in BF16 for even

further efficiency improvements. Generally this is
supported by implementing all the same instructions other
floating point formats provide.

The most common use case is 2), supported for example
by PyTorch or TensorFlow. There is also a use-case for 3)
however. Both CUDA [5] and StableHLO/XLA [6] support
BF16 as an arithmetic format. Internal analysis has shown a
20 times smaller error rate than half precession numbers on
some benchmarks giving results with less than 0.2% error
rate differences against F32.

It is recommended that these use cases are all supported
as complementary extensions as currently planned.

ISA support

While most ISAs support BF16, it is not a standardised
number format, i.e. it is not fully IEEE-compliant.
Therefore implementations can differ. The differences seen
are if subnormal numbers are supported or treated as zero
(flushed), and what rounding modes are supported or used.
As the format was developed by Google arguably their
implementation could be considered the standard, and as
we will see most ISAs follow their choices.

Table 1 lists the instruction set, subnormal support, and
rounding mode for the Google TPU [7], Intel AVX-
512_BF16 [8], Armv8.2-A [9], Armv8.2-A extended BF16
support [9], and Nvidia Ampere tensor cores [10].

The Google and Intel implementations support
conversions and FMA instructions, the others also support
other matrix supporting operations like dot-products. Note
that Google, Intel, and ARM flush subnormal numbers, but
ARM has an option to make flushing selectable, while
Nvidia always supports subnormals. There does not seem
to be a clear consensus on the used rounding mode.

Table 1: BF16 ISA support

In general, we argue it is most compliant to flush

subnormals and support RTZ rounding as the default. The
lack of standardisation will require extension options
enabling other choices however.

Discussion

In the RISC-V community we have an opportunity to
carefully consider a well-designed and clean ISA. This
requires considering all potential number formats to
support. As will have become clear however, the valuable
opcode space required for full support would be large. It is
likely that wider standardised opcodes will be used
eventually naturally allowing common and most often used
instructions and number formats in narrower encodings and
uncommon ones in wider encodings. The alternative would
be using modes, i.e. CPU state, allowing e.g. the BF16
instructions to use the same encoding as half precision but
in a different mode. The advantage is avoiding wider
instructions and thus larger binaries, but the disadvantage is
less efficient execution when having to change mode.

The BF16 use cases all have their place, care should
therefore be taken in ensuring they are consistent. While
the lack of standardisation is unfortunate and may require
some configurability it should be noted that BF16 primarily
is meant to improve area and efficiency hence such options
should be judged in that light, favouring flushing and RTZ.

References

[1] https://lists.riscv.org/g/sig-fp.
[2] IEEE Computer Society. “IEEE Std 754™-2008”.
[3] R. Morris. “Tapered Floating Point”.
[4] S.Lee, A.Edgar. “Add. "The Focus Number System"”.
[5] CUDA Toolkit Doc. “Bfloat16 Precision Intrinsics”
[6] OpenXLA Project. “StableHLO Specification”.
[7] S.Wang, P.Kanwar. “BFloat16: The secret to high

performance on Cloud TPUs”.
[8] Intel. “BFLOAT16 Hardware Numerics Definitions”.
[9] “Arm® Architecture Reference Manual, Armv8-A”
[10] Fasi et al. “Numerical behavior of NVIDIA tensor
Cores”

ISA Instr. Subnormal Rounding

Google CNV, FMA flush ?
Intel CNV, FMA flush RNE
ARM CNV, FMA, MAT flush sel cnv, RTO
ARM_E CNV, FMA, MAT sel sel
Nvidia CNV, FMA, MAT support RTZ

