
GOAL

Add support for RISC-V’s vector cryptography, vcrpyto, extensions to 
QEMU. This work is necessary for their ratification and was 
sponsored by SiFive.

The extensions provide instructions for implementing various 
cryptographic algorithms: AES, SHA-2, ShangMi, etc.

Unlike the scalar equivalents, the vcrpyto extensions leverage vector 
registers to increase the throughput of cryptographic operations.

QEMU

For each instruction in the vcrypto extension we had to add support 
for:

We also wrote our own test framework that ran in Linux userland 
and generated JIT instructions with random parameters. This 
allowed us to cover a wider range of cases (although only positive 
ones).

ENDIANNESS

Let’s work through vaesz as an example - see printout. This instruc-
tion is part of the AES block cipher extension.

This instruction takes as arguments two vector registers, labelled vd 
and vs2. vd is then overwritten by the output from the instruction.

The first step is to add instruction’s bitwise encoding to QEMU so it 
can be recognised in binary. The encoding is given by the table in the 
“Encoding (Vector-Scalar)” section.

The RISC-V vector spec defines several parameters that can be used 
to tune the behaviour of the vector instructions. Such changes can 
render an instruction illegal, so the next step is to have QEMU check 
this. For vaesz, the requirements are contained within the `if` 
clause. 

Next we need to handle translating the RISC-V instruction into the 
host’s instruction set. QEMU provides copious tooling for implement-
ing this. We just needed to implement the pseudo code written in the 
spec as C code and then QEMU can handle the dynamic translation.

TESTING

The vcrypto spec had no prior implementation and we also targeted 
the latest version, with breaking changes frequently introduced (see 
above). So testing was important!

Our sponsor provided a test suite to check our implementation 
against: auto-generated assembly code containing positive and 
negative test cases, which we could run within QEMU.

There are two (sane) standards for loading data in/out of CPU reg-
isters: little endian (LE) and big endian (BE). With LE, the data’s least 
significant byte is stored in the smallest memory address and the 
most significant in the largest. It is vice versa for BE.

RISC-V CPUs are LE. QEMU, on the other hand, can be run on both LE 
and BE hosts. Hence someone may try emulating an LE RISC-V CPU 
on some BE host. 

If we weren’t careful we could’ve introduced some subtle bugs in this 
scenario.

Ideally we would have run our test suites on BE CPUs but we had 
no access to such hardware. However, QEMU-in-QEMU is actually a 
supported use of the program. Hence we could run our QEMU tests 
within a QEMU emulation of BE hardware! We opted for running 
FreeBSD in a 64-bit PowerPC emulation.

Only downside: building QEMU and running tests went from taking 
a few minutes on a laptop to multiple hours when done within the 
PowerPC emulation.

UPSTREAMING

The upstreaming process has been the 
usual cycle of submitting email patch 
submissions and implementing 
feedback. This began with an RFC before 
posting formal submissions, of which 
currently the 4th revision is being 
prepared. The vcrypto spec has osten-
sibly been frozen so hopefully future 
changes to the patchset will be minimal!

TALK TO US AGAIN

Come see us at booth 2 and find out how we can accelerate your 
RISC-V workflow!
 
P.S. We have merch 

ONE STEP IN THE PATH TO RATIFICATION

VECTOR CRYPTOGRAPHY IN


