
Improving Post-Quantum Cryptography coupling
Near-Memory Computing and RISC-V Cores

Maria Ramirez Corrales, Emanuele Valea and Jean Philippe Noel

Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France

Abstract

Near-Memory Computing (NMC) is a promising architectural approach to accelerate and improve the efficiency
of matrix products, since it drastically reduces the transfer of data between the CPU and the data memory. In
this paper, we propose to couple a NMC co-processor with a RISC-V based CPU to accelerate the matrix product
in Post-Quantum Cryptography (PQC) algorithms. Experimental results on the matrix product of FrodoKEM
PQC algorithm show a 4X improvement in performance with respect to the same implementation without the
NMC approach.

Introduction

Near-memory computing (NMC) is an architectural
approach with the aim of overcoming the huge gap,
existing in modern computing applications, between
the time spent to transfer data between the host pro-
cessor and the data memory and the time spent for
the computation itself. This is particularly relevant for
data-intensive applications centered on matrix prod-
ucts (e.g. machine learning, image processing, etc.).
Thanks to NMC approaches, we limit data exchanges
between the host processor and the data memory, so
the processor will only execute one custom command,
in order to make the memory start the computation
in parallel on all data that are already stored on the
same memory vector-line (at least 128 bits). Digital
modules are added close to the data memory to process
the data after it is read. For this reason, the memory
array keeps unmodified and all the computation is
performed in its periphery, which eases the integration
in larger systems, such as RISC-V architectures, and
makes it technology agnostic [1].

Post-Quantum Cryptography (PQC) is an inter-
esting use case that handles matrix-vector products.
Currently, researchers have investigated software im-
plementations and hardware accelerators for PQC al-
gorithms, including FrodoKEM-640 that is based on
matrix-vector products. Instead of dedicated accelera-
tors, NMC-based co-processors, coupled with a host
processor, could be used to efficiently speed-up PQC
algorithms [2]. On the other hand, as they are not
application-specific but domain-specific, they serve
as a "partial" accelerator as they can just accelerate
matrix-vector products in some algorithms, such as
the previously mentioned FrodoKEM-640, where these
operations take around 50% of the execution time [3].

In this paper, we show the potential of a computer
architecture combining a NMC-based co-processor and
a RISC-V CPU to accelerate the matrix product of
a PQC application. The NMC-based co-processor in
this paper is called Computational SRAM (C-SRAM).
It is based on an SRAM memory with a Near-Memory

Processing Unit (NMPU) that is able to decode specific
commands and to perform arithmetic operations on
any vector-line of the SRAM memory array.

RISC-V-based NMC architecture

Figure 1 shows the structure of the proposed system.
We used a CV32E40 CPU, based on the RISC-V ar-
chitecture. The CPU is connected to the memories
through a system bus based on the Open Bus Interface
standard. An instruction memory of 16KB and a data
memory of 256KB (i.e., the C-SRAM) are connected
to the CPU.

Figure 1: High-level schematic of the system.

The C-SRAM is an SRAM memory with NMC ca-
pabilities. SRAM memories are connected to the sys-
tem bus and they can be accessed by the processor
for either reading/writing data or fetching program
instructions. We use the C-SRAM as both data mem-
ory and NMC co-processor. It can be accessed by
the memory port or the NMC port. A vector arith-
metic logic unit (ALU) is the core of the NMPU. The
read/write logic is shared between the memory port
and the NMPU for reading the operands and writing
the results of NMC operations. The C-SRAM contains
a memory array made of 128-bit lines. The memory
array of the C-SRAM can be generated by a generic
memory compiler, making the NMPU compatible with
any memory technology. The memory port serves to
access the C-SRAM as a traditional memory. For this

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1



purpose, the whole memory is mapped to a range of
addresses that, when accessed through load/store in-
structions, allow to read/write data inside the SRAM
memory array. The NMC port is used to access the
NMPU, that executes the NMC instructions. A range
of addresses at system-level is reserved to NMC opera-
tions. Each time the RISC-V runs a store instruction
on NMC addresses, the received values are decoded
and processed by the NMPU. An NMC operation is
composed of three elements that must be encoded on
the bus transaction: the opcode defines the NMC oper-
ation; the source and destination addresses define the
memory vector-lines that store the operands and the
result. C-macros are used in order to generate NMC
instructions at compile-time while allowing program-
mers to use an assembly-like syntax for inserting NMC
instructions in their program. This method makes
the software support for the C-SRAM straightforward,
without the need of modifying the RISC-V compilation
toolchain.

NMC instructions are processed by the NMPU
through a pipeline made of 6 stages:

• Decode: the NMPU receives the instruction and
it parses bus transactions in order to decode the
instruction opcode and the operands.

• Memory Read (two pipeline stages): the addresses
retrieved from the NMC instruction are used by
the NMPU to read the memory array and fetch
the content of two memory vector-lines.

• Execution (two pipeline stages): a vectorial ALU
is placed inside the NMPU and, according to the
opcode, it performs a specific operation on the
two operands. Since the operands are memory
vector-lines, they can be interpreted as vectors of
values of different sizes. For instance, as the mem-
ory lines are 128-bit long, and the instructions
correspond to 16-bit additions, the ALU executes
eight operations in parallel. The second stage is
used for multiply-accumulate (MAC) operations.

• Writeback: the resulting vector is written inside
the destination memory vector line.

Results on PQC Application

In this Section, we show the results in terms of perfor-
mance of the proposed architecture using the C-SRAM
as a data memory and as a co-processor when running
FrodoKEM-640 Key Generation function. 47% of the
execution time of this algorithm is spent on executing
matrix-vector products. The SW implementation has
been compiled with the riscv32-unknown-elf-gcc
compiler, with -O1 optimization level. Figure 2 com-
pares the execution time of the RISC-V implemen-
tation of FrodoKEM-640 between the reference im-
plementation (i.e., where the C-SRAM is used only
as data memory) and the NMC implementation (i.e.,
where the C-SRAM is used as a co-processor). If we

Figure 2: FrodoKEM-640 execution times in terms of
millions of clock cycles.

compare the reference RISC-V SW implementation
to the state of the art implementations on ARM M4
microprocessors [3], we observe a 3% gain on the exe-
cution time. The SW implementation, coupled with
the NMC approach, provides a gain of 76% in the
matrix-vector product execution time and a 12% gain
on the whole function with respect to the reference
implementation. This corresponds to a 4x acceleration
factor in the matrix product execution time. Since
eight MAC operations are performed in parallel, a per-
formance gain of a factor eight was expected. However,
the reality of the proposed NMC-based implementa-
tion is impacted by some overhead, explained by the
post-processing of the MAC results. In fact, when
eight MAC operations are performed in parallel on
the NMPU, eight partial results are obtained. These
intermediate values are then summed up together by
the RISC-V to obtain the final result.

Conclusions

We showed the interest of NMC-based architectures
coupled with RISC-V processors to improve the perfor-
mance of PQC algorithms such as FrodoKEM-640. We
have achieved a 12% speedup on the whole algorithm
by accelerating the matrix product (where a major
acceleration of 76% is achieved). This work shows
the interest of further exploring the potentiality of the
NMC approach for cryptographic algorithms, since the
proposed C-SRAM shows a very smooth integration
with the RISC-V architecture and its toolchain.

References

[1] M. Kooli et al. “Towards a Truly Integrated Vector Pro-
cessing Unit for Memory-Bound Applications Based on a
Cost-Competitive Computational SRAM Design Solution”.
In: 18.2 (Apr. 2022).

[2] D. Bellizia et al. “Post-Quantum Cryptography: Challenges
and Opportunities for Robust and Secure HW Design”. In:
DFTS 2021. 2021, pp. 1–6.

[3] J. Howe et al. “Standard Lattice-Based Key Encapsulation
on Embedded Devices”. In: IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2018.3 (Aug.
2018), pp. 372–393.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023


	Introduction
	RISC-V-based NMC architecture
	Results on PQC Application
	Conclusions

