
200

7

3% and 15% time

reduction compared

to the state of the art

4x speed up on matrix

product execution

Even if the expected speedup is 8x (8 MACs are executed in parallel), some overhead to

compute the 8 partial results in the RISC-V core is added, what leads to just a 4x speed up

in matrix product and a total of 12% reduction on total execution time.

ARM M4 [2]

Improving Post-Quantum Crytography

coupling Near-Memory Computing

and RISC-V Cores

Abstract
Near-Memory Computing (NMC) is a promising architectural approach to accelerate and improve the efficiency of matrix products, since it drastically reduces the

transfer of data between the CPU and the data memory. In this poster, we propose to couple a NMC co-processor with a RISC-V based CPU to accelerate the

matrix product in Post-Quantum Cryptography (PQC) algorithms. Experimental results on the matrix product of FrodoKEM PQC algorithm show a 4x improvement

in performance with respect to the same implementation without NMC approach.

Post-Quantum Cryptography

References

[1] M. Kooli et al. “Towards a Truly Integrated Vector Processing Unit for Memory-Bound Applications Based on a Cost-Competitive Computational SRAM Design Solution”. In: 18.2 (Apr. 2022).

[2] J. Howe et al. “Standard Lattice-Based Key Encapsulation on Embedded Devices”. In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2018.3 (Aug. 2018), pp. 372–393.

María Ramírez Corrales, Emanuele Valea and Jean-Philippe Noel

Near-Memory Computing

Results

Instruction Decoding Instruction Pre-decoding

Low Energy Cost

Scalar + Vector computing

NMC-based solution
(Non-Von Neumann architecture)

SRAM DATA

SRAM DATA

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

+

=

128-bit

SRAM INSTR.
LD instr.

1 x ADD

ST instr.

C-SRAM

Vector PE

Scalar

PE

ALU

32-bit

ALU

Medium Energy Cost
(data transfer on system bus)

Vector computing

(SIMD)

High Energy Cost
(data transfer on system bus)

Scalar computing

Current solutions
(Von Neumann architecture)

SRAM DATA

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

+ + + +

= = = =

SRAM INSTR.

4 x ADD

ST Ci

LD Ai

4 x LD instr.

LD Bi

Scalar

PE

ALU

32-bit

SRAM DATA

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

+

=

1 x ADD

LD B

ST C

LD A

SRAM INSTR.
LD instr.

Vector

PE

128-bit

ALU

1
MATRIX MULTIPLICATION

The 4x speed up on matrix

multiplication proved the great

interest of linking NMC

approach and RISC-V

processors to accelerate matrix

multiplication, not only for PQC

applications (IA, image

processing, pre-quantum

cryptography…).

2
PQC APPLICATIONS

As PQC functions spend half of

the execution time on matrix

product, with this NMC

approach and a RISC-V

processor we can accelerate at

least half of the function,

leading to a 12% reduction on

total execution time.

3
OTHER OPERATIONS

By accelerating the matrix

product on the implemented

function, the other operations

run by RISC-V CPU get more

importance (87% of the

execution time). We have to

explore which of them can be

accelerated by the NMC co-

processor.

FrodoKEM has three main functions, but in this work we are focused on the key generation

one as a prove of concept. The matrix product takes half of the execution time and it can be

easily parallelized in our C-SRAM.

Thanks to our C-SRAM, we can compute vectorial instructions near the SRAM array,

using it as a vectorial co-processor. This reduces the data transfers between the RISC-V

and the memory, what leads to an acceleration on execution time and energy consumption

reduction, what makes it perfect for secured embedded applications [1].

Ciphertext

(8x8 and 8xn

elements)

A x =e+ bs

8

Key generation

Encryption

Axs’ + e’ = u

x + =+e”s’ b m v

Public key A b

A
Square random matrix

(nxn elements) s
Secret key random

Gaussian array

(nx8 elements)

e
Random Gaussian array

(nx8 elements)

- s x u = mv

Decryption

Secret key

+ error

v

n

FrodoKEM example

Data size = 16 bits

Our solution

Read 1

Memory

access

Read 2

Memory

access

Writeback

Memory

access

NMC port

Decode

NMC

instr.

decoder

opcode

@src 1

@src 2

@dest

Execution 2

MAC

Adder

Execution 1

NMC

ALU

O
p

e
ra

n
d

 1

O
p

e
ra

n
d

 1
O

p
e
ra

n
d

 2

R
e
s
u

lt
 1

R
e
s
u

lt
 2

6-stage pipeline

NMC instruction content sent by NMC

port and decoded by the NMC decoder in

the pipeline controller:

• Opcode

• Source addresses

• Destination address

The only operation executed in two clock

cycles is Multiply-Accumulate (MAC)

C-SRAM

CV32E40

OBI bus

Instruction

memory

(16 KB)

NMC
port

NMPU

A
L
U

Pipeline
controller

Memory
port

SRAM

Memory array

(256 KB)

Read/write
logic

5%

NMPU area

overhead

The ALU can process vectors up

to 128 bits. In this work, it executes

8 operations in parallel

The memory array can be

generated by an standard

memory compiler

The C-SRAM can be accessed as a

standard memory (LD/ST) or as a

vectorial co-processor (NMC

instructions), what allows us to use

it a data memory while NMC

instructions are not needed

We made two software implementations of FrodoKEM-640 key generation function:

1. Using C-SRAM as data memory, so the RISC-V core run the whole function

2. Using C-SRAM as a vectorial co-processor for matrix product operation

They were compiled with riscv32-unknown-elf-gcc compiler, with -O1 optimization level

C-SRAM as data memory C-SRAM as co-processor

12% time reduction

on key generation

function

Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France

maria.ramirez-corrales@cea.fr

