
A Vulkan Graphics Driver for RISC-V CPUs
Martin Troiber1∗

1School of Computation, Information and Technology, Technical University of Munich

Abstract

This report presents the first open-source Vulkan graphics driver for RISC-V. We achieved this by porting
SwiftShader - a graphics driver targeting CPUs - to RISC-V. For the evaluation of our port we utilized QEMU
emulation and the Allwinner D1 RISC-V chip. On RISC-V chips without a GPU this is the first time rendering
3D graphics with Vulkan is possible. This is particularly important for server CPUs or low cost RISC-V chips
which are often used on single board computers.

Introduction

Open-source CPU architecture has become increas-
ingly popular due to the success of RISC-V. The inner
workings of a GPU on the other hand are currently
less accessible for researchers and the general public.
Even more so creating a complete open-source SoC
with graphics rendering capability is currently not
possible.

Therefore we do resort to a graphics driver that
targets CPU cores instead of GPU cores. For our
project we want to utilize SwiftShader [1] which is
currently mainly developed by Google. We picked
SwiftShader after going through literature research
and deciding that the competing implementations are
either incomplete like Kazan [2] or tied to the large
Mesa 3D graphic stack like LLVMpipe. Since the
completion of our project a separate effort for adding
RISC-V support to LLVMpipe has started [3].

SwiftShader Architecture

Figure 1: SwiftShader architecture

SwiftShader is composed of a layered architecture
displayed in Figure 1. Vulkan and SPIR-V are exposed
to the user. Vulkan is the low level graphics API that
the user interacts with if he wants to run an application
on a GPU. The actual programs that Vulkan executes
∗Corresponding author: m.troiber@tum.de

on our RISC-V cores are called shaders. Before exe-
cuting a Vulkan program we first have to pre-compile
all shaders to SPIR-V.
This is then translated to Reactor which is Swift-
Shader’s internal representation. The Reactor lan-
guage makes use of run-time specialization which al-
lows the generation of smaller binaries.

The compilation of the Reactor language to machine
code then happens with the Just-In-Time compiler of
LLVM (LLVM-JIT). [4] When LLVM-JIT gets invoked
by SwiftShader it takes the representation of Reactor
code from memory, compiles it to machine code for the
target architecture and places the binary in another
memory location. After compilation SwiftShader can
use the binaries and tell the scheduler to distribute
them among the CPU cores for execution.

SwiftShader uses the Marl Scheduler which allows
the creation of either threads or fibers on the CPU
cores. SwiftShader utilizes fibers as they are more
light-weight and allow for more fine grained control
over task switching.

SwiftShader Port for RISC-V

The Vulkan API, SPIR-V Shaders and Reactor did
not require any RISC-V specific changes as these are
high level interfaces and intermediate representations
which do not directly interact with the hardware.

With our contributions it is now possible for Swift-
Shader to use the current development version LLVM
16 to utilize the latest JIT features for RISC-V [5].

The main reason for updating LLVM is that newer
versions support more relocations in the code gener-
ated for RISC-V. Despite the significant number of
relocations still missing we were able to utilize LLVM-
JIT already in its current form.

Finally the linking layer within LLVM-JIT that
SwiftShader uses does not support RISC-V. As a result
we had to switch from the currently used RTDyldOb-
jectLinkingLayer to the ObjectLinkingLayer which is
newer and does support RISC-V [5].

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:m.troiber@tum.de


For Marl to be compatible with RISC-V we had to
add RISC-V’s register layout [5]. Marl needs to know
about this information to save and switch the register
content when a context switch happens.

Target Platforms

On our targets we use Debian as an operating system.
For the ease of development we started out on a

RV64GC based QEMU [6] system. As a host system
for QEMU we use a Ubuntu based system with an
AMD Ryzen 7 PRO 4750U which features 8 cores
clocked at 1.7Ghz - 4.1Ghz.

As our Single Board Computer (SBC) we picked the
Sipeed Nezha which features the Allwinner D1 SoC.
The chip provides a single RV64GC core clocked at
1.0Ghz. Allwinner licensed the XuanTie C906 from
T-Head Semiconductor as a CPU for this SoC. The
development board also offers 1 GB DDR3 memory as
well as an HDMI output. It only features a Tensilica
HiFi4 Digital Signal Processor (DSP) for 2D graphics
applications but no 3D acceleration.

Evaluation

With respect to functional evaluation we were able
to pass a majority of the test cases that SwiftShader
includes [5].

Figure 2: Gears demo scene

For a performance comparison we utilized the pop-
ular Vulkan demo scenes by Sascha Willems [7]. In
particular we picked the ‘gears‘ example displayed in
Figure 2 as it features simple geometry and textures.
In emulation and on the Nezha board we can success-
fully render this scene with our port of SwiftShader.

The data in Table 1 shows us that the performance
of QEMU and Nezha is in the same order of magnitude.
We can also see that by utilizing emulation in our use
case the performance is about two orders of magnitude
less than if we execute SwiftShader on the native X86
platform. We attribute this to emulation loss and the
lack of SIMD support for our RISC-V setup. Similarly

Table 1: Performance metrics on our target platforms.
Gears scene rendered at 1080p resolution.
Average values after a minute of execution.

Target Frame rate RAM Compute
QEMUa 1-4fps 120MB 80%-90%
Nezhab 2fps 77MB 80%
X86a 180fps 33MB 48%
GPUc 2600fps 60MB 56%

aAMD Ryzen 7 PRO 4750U with 8x1.7-4.1GHz.
bAllwinner D1 with 1x1.0GHz.
cAMD Radeon RX Vega 7 with 1.6GHz.

it shows that the architecture on the Allwinner D1
chip is significantly more simple than our X86 CPU.
Finally we can also see that our GPU outperforms
our CPU based rendering approach by an order of
magnitude as well.

Table 2: SwiftShader scaling by number of QEMU cores.
Gears scene rendered at 1080p resolution.
Average values after a minute of execution.

Coresa Frame rate RAM usage CPU usage
1 1fps 120MB 90%
2 2fps 120MB 90%
4 3fps 120MB 85%
6 4fps 120MB 83%
8 4fps 120MB 80%

aAMD Ryzen 7 PRO 4750U with 8x1.7-4.1GHz.

Additionally in Table 2 we analyzed how the number
of QEMU cores affects the frame rate, memory usage
and CPU usage. While the memory consumption of
SwiftShader stays the same the frame rate does scale
with the number of cores, albeit sublinearly.

References

[1] Nicolas Capens. SwiftShader. https : / / swiftshader .
googlesource.com/SwiftShader. 2022.

[2] Jacob Lifshay. Kazan. https://salsa.debian.org/Kazan-
team/kazan. 2020.

[3] Alex Fan. Mesa merge requests: Add RISC-V support to
LLVMpipe. https : / / gitlab . freedesktop . org / mesa /
mesa/-/merge_requests/17801. 2022.

[4] Chris Lattner and Vikram Adve. “LLVM: A compilation
framework for lifelong program analysis & transformation”.
In: International Symposium on Code Generation and
Optimization, 2004. CGO 2004. IEEE. 2004, pp. 75–86.

[5] Martin Troiber. Swiftshader issue tracker: Port Swift-
shader to RISC-V. https://issuetracker.google.com/
issues/217573066. 2022.

[6] Fabrice Bellard. “QEMU, a fast and portable dynamic
translator.” In: USENIX annual technical conference,
FREENIX Track. Vol. 41. California, USA. 2005, p. 46.

[7] Sascha Willems. Vulkan C++ examples and demos. https:
//github.com/SaschaWillems/Vulkan. 2015.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://swiftshader.googlesource.com/SwiftShader
https://swiftshader.googlesource.com/SwiftShader
https://salsa.debian.org/Kazan-team/kazan
https://salsa.debian.org/Kazan-team/kazan
https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17801
https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17801
https://issuetracker.google.com/issues/217573066
https://issuetracker.google.com/issues/217573066
https://github.com/SaschaWillems/Vulkan
https://github.com/SaschaWillems/Vulkan

	Introduction
	SwiftShader Architecture
	SwiftShader Port for RISC-V
	Target Platforms
	Evaluation

