
Enabling Design Space Exploration of RISC-V
Accelerator-rich Computing Systems on gem5

Odysseas Chatzopoulos*, George Papadimitriou, Vasileios Karakostas, Dimitris Gizopoulos
Dept. of Informatics & Telecommunications, University of Athens

{od.chatzopoulos, georgepap, vkarakos, dgizop}@di.uoa.gr

Abstract
The slowdown of CMOS scaling has led to the widespread use of heterogeneous SoCs that combine general-purpose processor
cores with customized accelerators. The immense growth of the RISC-V community means that more and more people
are interested in using RISC-V cores in their SoCs. It is thus imperative to obtain tools that allow for fast design space
exploration and modeling of these designs. In this paper we describe our effort to port gem5-SALAM, a cutting-edge
pre-RTL heterogeneous SoC simulator, to incorporate general-purpose RISC-V cores. In such a way, we provide to the
RISC-V community a powerful tool to design, evaluate and optimize such systems.

Introduction
The end of Dennard scaling and the slowdown of
Moore’s law [1] have forced a paradigm shift in
computer architecture. Single and multicore micro-
processors have been succeeded by heterogeneous
systems-on-chip (SoC) that are widespread across
computing domains, ranging from embedded de-
vices to large datacenters [1]. Such designs incor-
porate general-purpose processor cores with mul-
tiple domain-specific accelerators of varying size
and complexity to meet certain power and perfor-
mance constraints. The RISC-V ecosystem has seen
tremendous growth in the past few years, making
SoCs that include RISC-V cores extremely attrac-
tive. Successfully designing and optimizing such
systems depends on the ability to quickly and accu-
rately model and simulate the complex interactions
between their components, performing design space
exploration across a wide range of design parame-
ters [1]. While RTL simulation is very accurate [1],
the relatively low throughput makes simulating the
entire SoC excessively time-consuming, thus limit-
ing exploration of vast design spaces to a few hand-
picked design points. On the other hand, early (i.e.,
pre-RTL) microarchitecture-level modeling based on
detailed functional and performance models, pro-
vides high throughput, ease of use, and high flexi-
bility. To this end, several attempts have been made
to fill the gap between low-throughput and accuracy
of modeling. gem5-SALAM [2] is a pre-RTL hetero-
geneous SoC simulator based on the widely used
gem5 [3] microarchitecture-level simulator that has
managed to significantly bridge this gap.

*Corresponding author: od.chatzopoulos@di.uoa.gr
This project has received funding from the European Union’s
Horizon Europe research and innovation programme under grant
agreement No. 101070238 and No. 101097224. Views and opinions
expressed are however those of the authors only and do not neces-
sarily reflect those of the European Union. Neither the European
Union nor the granting authority can be held responsible for them.

gem5-SALAM utilizes a dynamic LLVM-based ac-
celerator model that enables scalable modeling of
multiple interacting accelerators with full-system sim-
ulation support. In contrast to other similar SoC sim-
ulators, such as gem5-Aladdin [4], gem5-SALAM of-
fers a much more accurate representation of runtime-
dependent accelerators and enables the study of the
interaction between multiple accelerators and other
system components, such as the memory system and
general-purpose processor cores. Since it harnesses
the power and maturity of gem5, gem5-SALAM is
highly customizable to the user’s needs. Different
accelerator architectures, ranging from kernel-level
accelerators tied to the system cache, to application-
level accelerators attached to the IO bus, can be
quickly evaluated and compared.

In its current state, gem5-SALAM supports only
the Arm ISA when it comes to the general-purpose
cores in the modeled SoC. Even though the acceler-
ator system would be largely identical, this lack of
support for the RISC-V ISA poses a significant barrier
to researchers and engineers that want to evaluate
and deploy SoCs with RISC-V cores. Hence, adding
RISC-V support to gem5-SALAM would allow the
RISC-V community to take advantage of all the pow-
erful features that this simulation framework has to
offer. In this paper, we summarize the main changes
and enhancements that are necessary to allow for
gem5-SALAM to use the RISC-V ISA for the simu-
lated processor cores.

Porting gem5-SALAM to RISC-V
Porting gem5-SALAM to RISC-V has been facilitated
by the recent introduction of RISC-V full-system ex-
ecution support into gem5 [5]. The main challenge,
however, is to identify the Arm specific components
and translate them into the corresponding RISC-V
ones. We summarize below the major components
that had strong dependency on the Arm platform.
Specifically:

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:od.chatzopoulos@di.uoa.gr


1. The interrupt system used by gem5-SALAM
hardware components that employs the Arm
General Interrupt Controller (GIC) for posting
interrupts to the host CPU.

2. The bare-metal software infrastructure that in-
cludes the Arm specific boot code and interrupt
handler support.

3. The automatic gem5 configuration script genera-
tor that uses an Arm gem5 configuration script
as a template.

From (Arm) GIC to (RISC-V) PLIC
gem5-SALAM hardware components, such as the
main Communications Interface (responsible for the
interface between the host and the accelerator) and
the DMA (direct memory access) devices, use the
Arm GIC to send and receive interrupts to and from
the CPU. These functions have been translated to
the Platform Level Interrupt Controller (PLIC) that is
present in the current gem5 RISC-V model. After a
lengthy debugging process, we managed to identify
a bug in the gem5 PLIC implementation that resulted
in the incorrect memory mapping of the interrupt
claim space. After rectifying this issue, we were able
to use interrupts to properly synchronize accelerator
functions with the host CPU.

RISC-V Bare-Metal Application Support
gem5-SALAM uses bare-metal applications running
on the host CPU core, to simplify driver develop-
ment for each new accelerator that is being studied,
without limiting the potential for OS support. To
run bare-metal applications on RISC-V cores, we use
SiFive’s Freedom-E SDK since the HiFive platform
that gem5 supports is based on the SiFive U54 SoC.
By using this SDK we minimize the manual effort
required for deploying bare-metal applications and
have full bare-metal C library support in the form
of Newlib. Moreover, the Freedom-E SDK provides
a flexible system for interrupt handling, which, in
conjunction with the transition from GIC to PLIC,
provides full interrupt support.

Automatic Configuration Script Generator
The latest version of gem5-SALAM uses an automatic
gem5 configuration script generator to simplify the
development of accelerator-rich SoCs. This allows
for complex configuration scripts to be generated by
parsing a single YAML file that contains a descrip-
tion of the simulated system. To port the generator
to RISC-V, (1) we swapped the Arm-specific script
template to an already existing RISC-V full-system
configuration script, (2) made modifications to ini-
tialize the gem5-SALAM components, and (3) added
the accelerator memory mapped addresses to the
address ranges of the RISC-V platform.

0Κ

250Κ

500Κ

750Κ

C1 C2 C3 C4 C5

Cycles

GEMM
MD-KNN

0Κ

250Κ

500Κ

750Κ

1000Κ

C1 C2 C3 C4 C5

Area

GEMM
MD-KNN

Figure 1: Performance & Area.

Proof of Concept
As a proof of concept, we explore the design space of
two accelerators for two kernels from MachSuite [6],
GEMM (General Matrix Multiply) and MD-KNN
(Molecular Dynamics using K-Nearest Neighbors),
for five different architectural configurations (i.e., C1
– C5, where higher numbers represent more parallel
functional units). Figure 1 shows the results for the
execution time (left graph) and the area overhead
(right graph). We observe the different trade-offs that
gem5-SALAM allows us to study.

Conclusion & Future Work
By applying these modifications to gem5-SALAM, we
managed to enable all the powerful features of this
simulation framework for exploring different SoC ar-
chitectures that include RISC-V general-purpose CPU
cores, customized accelerators and memory hierar-
chies, as well as studying the complex interactions
between these components. As future work, we plan
to introduce a full-fledged Linux operating system
to the simulated machine and develop appropriate
drivers for the accelerators, modeling the entire sys-
tem stack. We also plan to use gem5-SALAM to
perform design space exploration of various DNN
(Deep Neural Network) hardware accelerators and
augment the proposed RISC-V based framework for
performance, power/energy consumption, and re-
silience studies.

References

[1] Y.S. Shao and D. Brooks. Research Infrastructures for Hardware
Accelerators. Morgan & Claypool Publishers, 2015.

[2] Samuel Rogers et al. “gem5-SALAM: A System Architecture
for LLVM-based Accelerator Modeling”. In: 2020 53rd An-
nual IEEE/ACM International Symposium on Microarchitecture
(MICRO) (2020), pp. 471–482.

[3] Nathan Binkert et al. “The gem5 simulator”. In: ACM
SIGARCH computer architecture news 39.2 (2011), pp. 1–7.

[4] Yakun Sophia Shao et al. “Co-designing accelerators and SoC
interfaces using gem5-Aladdin”. In: IEEE/ACM International
Symposium on Microarchitecture (2016).

[5] Peter Yuen Ho Hin et al. “Supporting RISC-V full system
simulation in gem5”. In: Proc. Workshop Comput. Architect.
Res. RISC-V (2021).

[6] Brandon Reagen et al. “Machsuite: Benchmarks for accel-
erator design and customized architectures”. In: 2014 IEEE
International Symposium on Workload Characterization (2014).

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023


	Introduction
	Porting gem5-SALAM to RISC-V
	From (Arm) GIC to (RISC-V) PLIC
	RISC-V Bare-Metal Application Support
	Automatic Configuration Script Generator

	Proof of Concept
	Conclusion & Future Work

