CV32E40P UPDATES

CUSTOMIZING AN OPEN-SOURCE RISC-V CORE AT INDUSTRIAL-GRADE; EXPERIENCES AND CHALLENGES

Pascal Gouédo (pascal.gouedo@dolphin.fr) - Yoann Pruvost - Xavier Aubert - Olivier Montfort / Dolphin Design
Pasquale Davide Schiavone - Mike Thompson / OpenHW Group

OpenHW group CORE-V: From CV32E40Pv1 to CV32E40Pv2

- 4-stage single-issue in-order pipeline
- OBI protocol memory interfaces
- Standard external debug and interrupt support

- From PULP instructions to RISC-V X custom extensions
 - Post-incrementing load & store
 - ALU
 - Multiply Accumulate
 - 8- & 16-b SIMD instruction
 - Hardware Loops (zero-cycle branch)
- Configurable RTL
 - FPU (with parametrized latency)
 - ZFINX
 - COREV_PULP
 - COREV_CLUSTER

<table>
<thead>
<tr>
<th>Standard RISC-V Extensions</th>
<th>New Custom RISC-V Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard instructions</td>
<td>New Custom Instructions</td>
</tr>
<tr>
<td>7</td>
<td>114</td>
</tr>
<tr>
<td>4</td>
<td>320</td>
</tr>
</tbody>
</table>

OpenHW group core-v-verif: Step&Compare to ImperasDV

- Moved from Step&Compare to ImperasDV methodology
- CORE-V instruction generator
 - Addition of Zfinx stream generator
 - Addition of 320 Pulp Instructions
- Used for everything not verified by Formal Verification
 - Asynchronous events (Interrupts, Debug, etc, …)
 - Prefetcher Unit
 - Hardware Loops
 - Floating-Point Division and Square-Root

Software Toolchains

- GCC upstream upgraded with 320 custom instructions
- Addition of ~200 built-in for C intrinsic usage
- Custom instructions automatic mapping for:
 - Post-incremented Load/Store
 - Branch with Register-Immediate comparison
 - 32-b Multiply-Accumulate
 - Hardware Loops
- LLVM toolchain upgrade on-going (due date e/o 2023)

Formal Verification

Based on SiemensEDA OneSpin 360 RISC-V Processor Verification app

`"custom_extensions": {
 "instructions": [{
 "name": "CV.SDOTUP.B",
 "disassembly": "cv.sdotup.b {rd},{rs1},{rs2}",
 "decoding": "1001100 rs2 rs1 001 rd/rs3 1111011",
 "execution": "X(rd) = X(rs3) + X(rs1)[7..0] * X(rs2)[7..0] + X(rs1)[15..8] * X(rs2)[15..8] + X(rs1)[23..16] * X(rs2)[23..16] + X(rs1)[31..24] * X(rs2)[31..24]
 }
}"

FORMAL VERIFICATION NUMBERS

<table>
<thead>
<tr>
<th>Configurations</th>
<th>~400 Assertions per CFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime for 70% of assertions per CFG</td>
<td>~2 h</td>
</tr>
<tr>
<td>100% Unbounded Proves</td>
<td></td>
</tr>
</tbody>
</table>

31 BUGS FOUND

(IMPACT OF ENABLING FPU/PULP)