
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

CV32E40P updates:

 customizing an open-source RISC-V core at industrial-grade;

experiences and challenges
Pascal Gouédo1, Yoann Pruvost1, Xavier Aubert1, Olivier Montfort1

Pasquale Davide Schiavone2, Mike Thompson2

1Dolphin Design, 2OpenHW Group

Abstract

This paper will focus on the design and verification strategy of an open-source RISC-V CPU for edge-

computing platforms at industrial-grade.

Introduction

In 2021 Dolphin Design made a test chip using a

customized RI5CY CPU from ETH Zurich in one MCU sub-

system and in a Multicore platform with 16 cores.

However, the Technology-Readyness-Level (TRL) of the

core was not high enough to meet standard required by

production requirements.

When the core moved to the OpenHW Group organization,

it achieved a TRL-5 (enough to meet industrial-grade

according to the official scale from NASA and the European

Commission) by applying industrial verification strategies as

step&compare against a reference model, Universal

Verification Methodology (UVM), etc., on the RV32IMC

instructions subset supported by the core.

This paper will present the second verification project

applied to the CV32E40P core to verify the missing RV32F,

Zfinx and custom RV32Xpulp ISA extensions to achieve a

TRL-5 on all the ISA supported by the core. We will talk

about the challenges of verifying custom extensions,

collaborating in an open-source ecosystem with other

stakeholders, the Dolphin experience, and final outcome.

CV32E40Pv2

OpenHW Group is a not-for-profit, global organization

with the objective to deliver open-source cores at industrial-

grade level.

Rather than verifying RI5CY core from the ground up,

Dolphin Design (France) decided to become an OpenHW

Group member to drive and to execute the verification of the

custom Xpulp ISA extension developed at ETH Zurich and

the official F and Zfinx RISC-V extensions.

Specification and Design

Originally, the RI5CY’s custom Xpulp instructions were

partly disseminated in RISC-V standard extensions as well

as using Custom extensions. And Pulp_Zfinx was not

aligned with the ratified Zfinx extension.

Therefore, in order to have CV32E40P fully compliant

with the RISC-V specifications, all Xpulp instructions have

been re-encoded to fit in Custom-0 to Custom-3.

Additionally, the Pulp_Zfinx was fixed to meet the official

Zfinx extension specification.

Verification

Coming to the verification side, the Core-V-Verif

verification environment from OpenHW group was reused.

Core-V-Verif is an open-source SystemVerilog verification

environment which follows the popular UVM. Core-V-Verif

was originally developed for v1.0.0 release of CV32E40P,

and at the time of writing, it has been extended to support

four additional cores from the CORE-V family of RISC-V

cores.

A key feature of Core-V-Verif is its integration of a

reference model that executes the same test-program as the

device-under-test (DUT). The first generation of Core-V-

Verif used an instruction set simulator (ISS) from Imperas

Software as the reference model. Keeping the DUT and ISS

synchronized was a challenge because these models have

different concepts of time: the DUT is an RTL model which

by definition is cycle-timed, and the ISS is instruction-timed.

In the general case, instructions executing on an RTL

model will require a variable number of clock cycles to

execute, while the same instruction stream on an ISS will

always take a constant number of “instruction cycles”

(typically one). A technique called step&compare was used

to keep the two models synchronized by “stepping” the ISS

only after the DUT retired an instruction. At this point the

state of the two models was compared. Any mismatch

between the PC, CSRs or GPRs was flagged as an error.

The above strategy was successful, but inefficient because

the step&compare logic in the testbench must compensate

for the cycle-time effects of events that are asynchronous to

the instruction stream such as interrupts, debug resets plus

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

bus errors and random delays on instruction fetch and

load/store memory buses.

For verification of v2.0.0 of the CV32E40P core, the ISS

was replaced by a true reference model (RM) called

ImperasDV. In this context, the distinction between an ISS

and an RM is two-fold:

● An RM is aware of, and explicitly compensates for,

the cycle-timed behavior of an RTL DUT;

● An RM is capable of predicting multiple legal state

changes and comparing them to the actual state

change of the DUT.

The reference model eliminated the need for complex

step&compare logic by running in zero time and predicting

multiple legal DUT states, based on instruction execution

and external asynchronous events. In addition, the Imperas

reference model has been extended to support the Xpulp

instructions v2 specification.

Another innovation for v2.0.0 was the adoption of a

standardized tracer interface to the DUT and RM, based on

the open-source RISC-V Verification Interface (RVVI). The

use of well documented, standardized interfaces greatly

simplifies the integration of the DUT with the RM.

Stimulus generation for a processor core comes in multiple

forms:

● Automatic generation of pseudo-random test-

programs was facilitated by RISCV-DV, an open-

source, SV/UVM RISC-V instruction stream

generator developed by Google. An OpenHW

extension to RISCV-DV, called COREV-DV was

used to generate random streams of any

instructions, v2 Xpulp ones included.

● Supplementing the random test-programs is a

library of manually generated C and Assembly

programs, including an obligatory “hello-world” as

well as some benchmarking tests like Coremark

and Embench IOT test suite.

● Randomization of bus cycle delays on the

Instruction fetch and Load/Store memory interfaces

are generated by a UVM Agent for the Open Bus

Interface (OBI) standard.

● UVM Agents randomize interrupts and debug

requests that are completely asynchronous to

program execution. These agents can be

disabled/enabled at run-time so that any test-

program can be used to test the effects of

interrupts/debug-request.

Formal Verification

To accelerate the verification of more than 300 Xpulp

instructions, Formal Verification methodology and tools

have been analyzed and evaluated.

At the end of this evaluation, Siemens EDA Onespin tools

have been selected for

● their processor verification capabilities,

● their RISC-V ISA app due to its ability to verify

standard extension as well as easy methodology

to extend it by adding custom instructions

described using pseudo-code language,

● for their RTL code coverage generation capability

using RTL mutation. This Formal code coverage

database can be exported in standard format that

can be merged with RTL simulation code

coverage.

The Xpulp instructions pseudo-code description using Sail

language have been added to the RISC-V ISA app to

successfully formally verify all the CV32E40P instructions,

including the previously verified standard IMC together with

the new F, Zfinx and Xpulp extensions.

This has been applied on 5 different core configurations

(controlled via SystemVerilog parameters).

In addition, to keep the already-verified RV32IMC

instructions sane for v1.0.0 users, a CI flow running a

logical-equivalence-checking script between v1.0.0 and

v2.0.0 (parametrized like v1.0.0) has been running for each

contribution to the core.

Software toolchain

One more important development is about supporting the

Xpulp instructions at industrial-grade in the GNU GCC SW

toolchain. This has been done by Embecosm, which started

from the GCC official upstream repository based on GCC 12

on which they added the Xpulp instruction support at

different levels (assembly, builtin and compiler). There was

a lot of investigation on -march option management and

builtin definition because no custom instruction has been

pushed in GCC upstream repositories as of today. So a

builtin specification for CORE-V cores using RISC-V rules

has been reviewed and released in OpenHW Group. After

that release, an important part of the work on the toolchain

was to create and to verify more than 250 builtins. Another

hot topic was the automatic generation of Hardware Loops

by the compiler.

Conclusion

The successful delivery of v2.0.0 release of CV32E40P is

about to be possible thanks to open-source and OpenHW

Group, where close collaboration of different people coming

from different companies working in areas as different as

software toolchain, reference model, hardware design and

verification and EDA provider was a key enabler for the

project.

