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Abstract

RISC-V is an instruction set architecture (ISA) that, as a core feature, can be extended with special instructions
to customize embedded processors to special applications such as from the control and machine learning domain.
There exist several instruction set simulators (ISS), that can quickly evaluate the benefit of special instructions
for a given application. Next to the core, also the compiler and assembler support for creating a binary
from embedded C code is required by designers to exploit performance benefits of special instructions such as
Multiply and Accumulate (MAC) operations. We introduce a code generation tool for extending existing LLVM
implementations with support for custom RISC-V instructions described in the CoreDSL format.

Introduction

Integrating a new instruction set extension or single in-
structions in simulators and embedded SW toolchains
such as LLVM[1] or GCC currently usually involves a
lot of manual work. In the past a description language
for ISA Extensions (CoreDSL[2]) has been developed.
Using a tool written in the Python language tool called
M2-ISA-R we are able to automatically generate a
compatible architecture for the ETISS instruction set
simulator [3]. M2-ISA-R follows the meta-modelling
approach depicted in Figure 1 supporting several fron-
tends/backends for conversions between different do-
main specific languages and tools.
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Figure 1: Metamodel-based approach.

In the academia as well as the industry numerous
ISA extensions for embedded RISC-V targets are being
developed. The MAC operation used for evaluations is
part of the Xcorev (formerly XpulpNN[4]) extensions.

Methodologies

As a first step the different versions of MAC instruc-
tions included in the Core-V ISA extension shown in
Table 1 have been implemented with the CoreDSL Syn-
tax. This involves describing the instructions behavior
and encoding based on the specification.
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Table 1: Core-V MAC Instructions.

Instructions Sign Width Shift Round
MAC/MSU S 32
MACUN U 16 (low) ✓
MAC[HHUN U 16 (high) ✓
MACSN S 16 (low) ✓
MACHHSN S 16 (high) ✓
MACURN U 16 (low) ✓ ✓
MACHHURN U 16 (high) ✓ ✓
MACSRN S 16 (low) ✓ ✓
MACHHSRN S 16 (high) ✓ ✓

We implemented a backend for the aforementioned
tool, which processes the metamodel generated from
the previously written CoreDSL code. Since the in-
structions behavior is stored in a tree-like data struc-
ture, transformation passes for mapping certain oper-
ators and types to LLVM primitives, can be applied
effortlessly. To extend the toolchain with the new
instructions, Tablegen[5] code, which integrates well
with the LLVM build infrastructure, is emitted au-
tomatically using Mako templates. These generated
artifacts can be applied to an existing LLVM code-
base in a following step. In addition to base level
assembler-level (machine code) support, our tool can
automatically insert simple dataflow patterns based on
the instruction’s behavior to allow low level optimiza-
tions such as pattern matching. Intrinsic functions are
automatically added to LLVMs clang frontend, expos-
ing the new instructions for usage in high-level C++
programs or third-party frameworks such as TVM[6].

Discussion

The implementation was evaluated on the Xcorevmac
subset for the custom Core-V instruction set extension
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Table 2: Utilized MAC Instructions.

Instruction Used
MAC ✓
MSU ✓
MACUN/MACHHUN
MACSN/MACHHSN ✓
MACURN/MACHHURN
MACSRN/MACHHSRN (✓)

used by the CV32E40P core. It provides 18 signed/un-
signed multiplication instructions with optional accu-
mulation and shift/rounding options for 32 bit (full-
word) and 16 bit (half-word) data. However only the
10 actual Multiply and Accumulate instructions listed
in Table 1 are discussed in the following. In addition to
the LLVM compiler, an instruction-accurate (CPI=1)
simulation architecture modelling a RV32GC core with
MAC instructions was generated.

An evaluation to analyze the impact of the automat-
ically inserted instructions was performed using the
MLPerf Tiny[7] benchmark suite and the TVM ma-
chine learning compilation framework[6]. A reduction
in the number of executed instructions is expected
due to the MAC instruction effectively replacing the
very common MUL & ADD pattern with a single
instruction.

The actually utilized instructions during the bench-
marks are given in Table 2. None of the unsigned
MAC instructions are inserted, which is expected for
int8 quantized networks. Since TVM mainly performs
16 bit multiplications, half words fetched from memory,
need to be sign extended first, to utilize the default
32 bit MAC instruction. This can be avoided by using
the 16 bit MACSN and MACHHSN instructions, oper-
ating on lower or upper elements packed into a single
32 bit word, which also allows fetching two elements
from memory in a single instruction.

The MACSRN and MACHHSRN instructions are
suitable to perform 16 bit fixed point multiplications
with rounding which is a common operation in quan-
tized neural networks. However since TVM uses a q31
fixed-point representation, these instructions can not
be used without making changes to TVM’s quantiza-
tion parameters, sacrificing accuracy while achieving
only neglectable improvements in performance.

The benchmark results are shown Figure 2 for
the 4 quantized MLPerfTiny models. The unopti-
mzed benchmarks use TVMs default schedules and
a channels-last (NHWC) data layout while the op-
timized variants are using tuned generic schedules
and a channels-first (NCHW) layout. For both dense
and convolutional neural networks a reduction in the
number of executed instructions of about 15 % (unop-
timized) to 30 % (optimized) was observed.
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Figure 2: Benchmark Results for 3 CNNs and 1 DNN

Outlook

The automatic generation of a LLVM toolchain for
RISC-V instruction set extensions was demonstrated
using the Multiply-Accumulate operation. Compared
to the manually written reference implementation, a
patch of roughly the same size and equivalent perfor-
mance is generated effortlessly. In particular, it can
save a lot of time and human efforts which is a crucial
aspect for workflows in the modern Electronic Design
Automation space.

Work is ongoing to support more types of instruc-
tions such data parallel (SIMD) operations which
should speed up modern Embedded ML workloads.
Likewise, it is essential to also model the micro archi-
tecture and memory hierarchy of the evaluated target
platform to estimate the cycle-accurate runtime, which
will be made possible in the near future.
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