
Chair of Electronic Design Automation
Department of Computer Engineering
School of Computation, Information and Technology
Technical University of Munich

LLVMGen: Automated Generation of a RISC-V LLVM
Toolchain for Custom MACs

Philipp van Kempen, Karsten Emrich, Daniel Mueller-Gritschneder, Ulf Schlichtmann

Problem Statement

Motivation

• RISC-V can be extended with special instructions to customize embedded CPUs
• Evaluation of new instructions needs simulator and toolchain (compiler and assembler)

support
• Extending Embedded SW compiler suites is very difficult and time intensive

State of the Art

• CoreDSL, a language for describing ISAs, was proposed in [2]
• ETISS[1] is an instruction set simulator (ISS) which can quickly evaluate the benefit of

special instructions for a given application
• M2-ISA-R is a metamodel-driven Python tool, generating ETISS-support based on

CoreDSL code

Goals

• Introduce a code generation tool for extending existing LLVM implementations with sup-
port for custom RISC-V instructions described in the CoreDSL format

• Artifacts should use the Tablegen syntax wherever possible
• Custom MAC instructions of Core-V Extension based on XpulpNN[4] and implemented

in CV32E40P core shall be used as reference

Challenges:

• Behavior of instructions with multiple outputs can not be modeled in Tablegen.
• Information which is not part of CoreDSL description (Intrinsics, Aliases, Constraints)

needs different format → YAML

Evaluation

TVM ML Compiler Suite [3]

• Applying several optimizations including autotuning
• Runtime: CRT, Executor: Ahead-of-Time (AoT), Memory planning: USMP

aww vww resnet toycar
0

0.5

1

N
u
m
b
er

of
In
st
r.

(r
el
.)

RV32GC RV32GC (optimized)

RV32GC+MAC RV32GC+MAC (optimized)

Tuning + Layout Transform:

MLPerf Tiny Benchmark [5]

• 4 Models:
Audio Wake Words (aww) }

CNNVisual Wake Words (vww)
Image Classification (resnet)
Anomaly Detection (toycar) } DNN

Core-V MAC Instructions:

• Utilized:
– MAC, MSU
– MACSN, MACHHSN (with patches)

• Unutilized:
– MACUN, MACHHUN
– MACURN, MACHHURN
– MASURN, MACHHSRN

Default TVM Performance:

• Layout: NHWC (Channels-last)
• Kernels: Untuned
• Using XCoreVMac:

– CNNS: 15% speedup
– DNN: 10% speedup

Optimized TVM Performance:

• Layout: NCHW (Channels-first)
• Kernels: Tuned with AutoTVM
• Using XCoreVMac:

– CNNS: 35% speedup
– DNN: 10% speedup

References

[1 ] Mueller-Gritschneder, D., et al. (2017, October). The extendable translating instruction set simulator (ETISS) in-
terlinked with an MDA framework for fast RISC prototyping. In Proceedings of the 28th International Symposium on
Rapid System Prototyping: Shortening the Path from Specification to Prototype (pp. 79-84).

[2 ] Ecker, W., et al. (2022, March). The Scale4Edge RISC-V Ecosystem. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE) (pp. 808-813). IEEE.

[3 ] Chen, T., et al. (2018). TVM: An automated end-to-end optimizing compiler for deep learning. arXiv preprint
arXiv:1802.04799.

[4 ] Garofalo, A, .et al. (2020, March). XpulpNN: Accelerating quantized neural networks on RISC-V processors through
ISA extensions. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 186-191). IEEE.

[5 ] Banbury, C., et al. (2021). Mlperf tiny benchmark. arXiv preprint arXiv:2106.07597.

Flow

1. Description of XCorevMac Instructions

• CoreDSL: Name, Encoding, Assembly and Operation for each instruction

CV_MAC {
encoding: 7’b1001000::rs2[4:0]::rs1[4:0]::3’b011::rd[4:0]::7’b0101011;
assembly: {"cv.mac", "{name(rd)}, {name(rs1)}, {name(rs2)}"};
behavior: {

signed<65> result = (signed)X[rs1] * (signed)X[rs2] + (signed)X[rd];
if(rd != 0) X[rd] = result[31:0];

}
}

• YAML: Intrinsics, Aliases,...

2. Processing with M2-ISA-R

• CoreDL Frontend: Parsing of CoreDSL code and conversion to Metamodel
• Metamodel: Storing information on Architecture (Encoding) and Behavior (Operation)
• ETISS Backend: Generation of C++ files for our instruction set simulator

M
et

am
od

el
A
rc
hi
te
ct
ur
e

B
eh

av
io
r

CoreDSL
Frontend

CoreDSL

YAML

A
rc
hi
te
ct
ur
e

B
eh

av
io
r

ETISS
Backend

ETISS
Architectures

LLVMGen
Backend

Files &
Patches

3. Running LLVMGen Backend

• Extract information from metamodel by applying transformation, optimization and
analysis passes

M
et

am
od

el
A
rc
hi
te
ct
ur
e

B
eh

av
io
r

LLVMGen
Backend

Assembly Syntax
Encoding / Fields

Instruction Formats
Intrinsics

Optimize

Transform

Analyse

Find Patterns

Attributes
Patterns

Files

Files

Files

Patches

4. Patching of Codebase and Compilation

• Combination of generated patches with upstream LLVM repository
• Tablegen tools generate various files during compilation of LLVM

RISCV.td.orig

RISCV.td.patch
+ RISCV.td

Intrinsics.td.orig

Intrinsics.td.patch
+ Intrinsics.td

RISCVInstrInfoCoreV.td

clang-tblgen

llvm-tblgen

*.cpp

*.inc

*.cpp

*.inc

build

Assembly Parser

Assembler

clang

...

5. Deployment

• Supports handwritten ASM and C/C++ code
as well as TVM-generated LLVM-IR

RISCV
Backend

Optimizer

Clang
Frontend

SelectionDAG

MCInst

MachineInst

Clang AST

LLVM IR

C/C++
TVM

ASM

LLVMIR

LLVM Project

ML
Workload

ELF

Future Work

• Support more types of instructions (Memory, SIMD,...)
• Utilize more custom instructions automatically
• Microarchitecture-aware scheduling and cycle-accurate simulation
• Validation on instruction test suite
• Automatic generation of unit-tests

This work has been developed in the project MANNHEIM-FlexKI funded by the German Federal Ministry of Education and Research
(BMBF) under contract no.01IS22086L. The authors are responsible for the content of this publication.

Contact:
philipp.van-kempen@tum.de
karsten.emrich@tum.de
daniel.mueller@tum.de

Open Source:
https://github.com/tum-ei-eda/
LLVMGen available later this year

philipp.van-kempen@tum.de
karsten.emrich@tum.de
daniel.mueller@tum.de
https://github.com/tum-ei-eda/

