
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Developing Custom RISC-V ISA Extensions for General

Embedded Image Processing Operations
Stephan Nolting1, Ingo Hoyer1, Alexander Utz1, Holger Kappert1 and Guenter Grau2

1Fraunhofer Institute for Microelectronic Circuits and Systems (IMS), Department for Smart Sensor Systems, Duisburg, Germany

2advICo microelectronics GmbH, Recklinghausen, Germany

Abstract

Processing data-intense tasks right inside an image sensor system allows to offload real-time constraints

from centralized data processing nodes and also to reduce transmission bandwidth requirements. High-

performant application-tailored processors emblematize one feasible concept to cope with these demands

while still providing flexibility for future revisions of the actual algorithms. This work presents an area-

optimized customized RISC-V processing system designed as application-specific instruction set processor

(ASIP), which is optimized to accelerate exemplary image processing operations. The proposed ISA extensions

exploit single-instruction multiple-data (SIMD) concepts on pixel level, resulting in a speedup of 13 (compared

to a software-only approach) while increasing the prototype’s FPGA hardware utilization by just 15%.

Introduction

Performing data-intense operations “on-site”, i.e. right

inside the data-sampling sensor system, is a common trend.

For example, camera systems can extract image features,

compress frame data or even compute entire scene analysis

algorithm without interaction with a host. This can help

reducing transmission bandwidth, but also allows to shift

real-time constraints to the device itself offloading a

centralized data processing system. By performing data-

intense tasks close to the sensor, like image pre-

processing/conditioning, time-critical parts of the algorithm

can already be processed on-site. High processing

throughput as well as energy efficiency are crucial -

especially if those devices are battery-powered. Using

application-specific hardware extensions is one option to

tackle those requirements.

In this work an exemplary cut-out of a real-world image

processing application is used. At first, common operations

and their computational bottlenecks are identified. Based

on this, dedicated accelerators are developed, which are

implemented as custom instruction set architecture (ISA)

extensions of a base CPU core. The proposed ISA

extensions are finally benchmarked on a FPGA prototyping

platform analyzing their performance speedup and

hardware costs.

A generic RISC-V base CPU is used as starting point.

The RISC-V instruction set architecture (ISA) itself was

designed to support the option for custom ISA extensions

options [1]. Exploiting these options on CPU-level allows

to setup an application-specific instruction set processor

(ASIP), which is specialized for the given application. This

approach allows an efficient hardware-software partitioning

as compute-intensive parts can be implemented as

dedicated hardware extension while keeping the design

flexible due to software programmability.

System Overview

The area-optimized and highly configurable and

extensible open-source NEORV32 RISC-V core [2] has

been selected as initial base CPU. This generic processing

core already provides hardware/software templates for

implementing application-defined extensions as custom

instructions (“CI”) and is configured as RISC-V

rv32im_Zicsr architecture. The core is integrated into an

application-specific system-on-chip (SoC) including

embedded memories and further peripheral modules

(illustrated in Fig. 1a). Exemplary image data is sampled as

8-bit grey-scale values via a standard serial peripheral

interface (SPI) and placed into an internal frame buffer

(FBUF). The firmware uses a sliding-window approach to

process the input image calculating the arithmetic mean and

consecutively the standard deviation for each window.

Pixel data is fetched from the framebuffer in a packed form

by the CPU (four 8-bit pixels per 32-bit word) allowing to

exploit sub-word parallelism using a SIMD-based

processing approach.

Figure 1: (a) SoC setup, (b) custom instruction word layout

and (c) CI logic for the standard deviation

Custom Instructions

The RISC-V specification [1] defines several distinct

opcodes being explicitly reserved for custom use. For this

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

work, we decided on using the custom-0 opcode

(0b0001011) to implement custom R3-type instructions.

This instruction format provides two source registers, one

destination registers and two function-defining immediate

field bit-fields (compare with Fig. 1b). In total, three

custom instructions are implemented. Two of them use a

SIMD-based processing approach to accelerate computing

the arithmetic mean and the standard deviation:

SIMD_sqdsum computes the accumulated sum of squared

differences (for standard deviation) and returns the lowest

32-bit of the accumulator to the destination register rd.

SIMD_sum computes the accumulated sum over all sub-

words (for arithmetic mean) and also returns the lowest 32-

bit of the accumulator to the destination register.

SIMD_sqdsum: rd <= accu+= ∑ (𝑚𝑒𝑎𝑛 − 𝑜𝑝𝑖)
2𝑁−1

𝑖=0

SIMD_sum: rd <= accu+= ∑ 𝑜𝑝𝑖
𝑁−1
𝑖=0

Both instructions can process up to eight 8-bit wide

subwords (packed as rs1 and rs2 input operands)

computing a single 32-bit accumulated result. The general

architecture of the SIMD_sqdsum instruction, is shown in

Fig. 1c. Single bits in the func bitfields of the custom

instruction words are used to control processing steps (i.e.

clearing the accumulator when starting the processing of a

new window or writing data to the CI-internal mean

register so no additional source port is required).

Additionally, the standard deviation requires the

computation of a square root. This function has also been

implemented as custom instruction processing an unsigned

32-bit integer and resulting a 32-bit fixed-point number

with 16 fractional bits. All custom instructions operate in

serial manner to keep hardware requirements at a

minimum. Consequently, the CI’s functional units need

several cycles to complete operations.

Evaluation

The processing platform is implemented and evaluated on

a low-power Lattice iCE40 UltraPlus FPGA (iCE40UP5k)

[3]. The design is clocked at 24MHz and uses the FPGA’s

large-scale “SPRAM” primitives for instruction and data

memories. The resource requirements for implementing the

base RISC-V CPU core (“CPU” row) and the proposed ISA

extensions (“CI” row) are listed in Table 1. A 64x64 pixel

reference image with 8-bit grey-scale data per pixel is used

as reference processing input. The image is fetched via SPI

from FPGA-external storage. Table 2 presents the required

clock cycles for processing an entire image using a window

size of 7x7 pixels. The “SW-only” column lists the clock

cycles for a plain-software implementation (i.e. no CIs).

Utilizing the proposed ISA extensions provides a total

speedup factor of 13. The computational bottleneck is

identified to be the computation of the standard deviation.

This part alone provides a speedup factor of 35 when using

the proposed ISA extensions (“SW+CI” column). The total

frame rate is increased from 0.91 frames per second (fps) to

13.1 fps resulting in an overall speedup factor of 13.4. The

hardware of all three custom instructions sums up to 530

LUTs increasing the base CPU hardware by approx. 15 %,

consuming about 10 % of the FPGA’s available LUT

resources and not impacting the core’s critical path at all.

Table 1: FPGA Utilization.
Module LUTs FF BRAM DSP

CPU 3451 1301 4 0

CI 530 316 0 3

Total
4912/5280

(93%)

1809/52

80 (34%)

20/30

(66%)

3/8

(37%)

Table 2: Processing Time Profiling.
 SW-only SW+CI

arithmetic mean 499 77
std. deviation 5636 158

frames/s 0.91 13.1

Future Work

In a next step, further computational bottlenecks that were

identified during implementation will be addressed by

extending the current CIs. For example, the addition of a

third source register operand (i.e. rs3) to the CPU’s

register file only requires two additional FPGA block

RAMs and allows implementing R4-type instructions

providing more data in parallel to the CI logic. Optimized

memory access schemes allowing unaligned data accesses

and interrupt driven double-buffering while sampling

image data from the off-chip source are further options for

increasing overall throughput. Replacing the current base

CPU by more performant architecture, which are optimized

for embedded image processing like [4], will also be

evaluated. Furthermore, a power consumption-driven

analysis of the developed hardware extensions is planned.

Summary

This work presents a custom ISA extension of a base

RISC-V processor core in order to accelerate the processing

of image data primarily focusing on computing arithmetic

mean and standard deviation. Three custom instructions

were developed motivated by the computational bottleneck

of the reference application and implemented for a FPGA

prototype. Using the proposed ISA extensions increases the

overall frame rate by a factor of 14.4 while expanding the

base core’s hardware requirements by just 15 %.

References

[1] RISC-V International, “RISC-V Instruction Set Manual”,

github.com/riscv/riscv-isa-manual

[2] S. Nolting et al. “The NEORV32 RISC-V Processor”,

github.com/stnolting/neorv32, doi:10.5281/zenodo.7715920

[3] Lattice Semiconductor, “iCE40 UltraPlus ML/AI Low-

Power FPGAs”,

latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus

[4] Fraunhofer IMS, “The AIRISC RISC-V Processor for

embedded AI”, github.com/Fraunhofer-IMS/airisc_core_complex

