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Abstract 

Processing data-intense tasks right inside an image sensor system allows to offload real-time constraints 

from centralized data processing nodes and also to reduce transmission bandwidth requirements. High-

performant application-tailored processors emblematize one feasible concept to cope with these demands 

while still providing flexibility for future revisions of the actual algorithms. This work presents an area-

optimized customized RISC-V processing system designed as application-specific instruction set processor 

(ASIP), which is optimized to accelerate exemplary image processing operations. The proposed ISA extensions 

exploit single-instruction multiple-data (SIMD) concepts on pixel level, resulting in a speedup of 13 (compared 

to a software-only approach) while increasing the prototype’s FPGA hardware utilization by just 15%.

Introduction 

Performing data-intense operations “on-site”, i.e. right 

inside the data-sampling sensor system, is a common trend. 

For example, camera systems can extract image features, 

compress frame data or even compute entire scene analysis 

algorithm without interaction with a host. This can help 

reducing transmission bandwidth, but also allows to shift 

real-time constraints to the device itself offloading a 

centralized data processing system. By performing data-

intense tasks close to the sensor, like image pre-

processing/conditioning, time-critical parts of the algorithm 

can already be processed on-site. High processing 

throughput as well as energy efficiency are crucial - 

especially if those devices are battery-powered. Using 

application-specific hardware extensions is one option to 

tackle those requirements.  

In this work an exemplary cut-out of a real-world image 

processing application is used. At first, common operations 

and their computational bottlenecks are identified. Based 

on this, dedicated accelerators are developed, which are 

implemented as custom instruction set architecture (ISA) 

extensions of a base CPU core. The proposed ISA 

extensions are finally benchmarked on a FPGA prototyping 

platform analyzing their performance speedup and 

hardware costs. 

A generic RISC-V base CPU is used as starting point. 

The RISC-V instruction set architecture (ISA) itself was 

designed to support the option for custom ISA extensions 

options [1]. Exploiting these options on CPU-level allows 

to setup an application-specific instruction set processor 

(ASIP), which is specialized for the given application. This 

approach allows an efficient hardware-software partitioning 

as compute-intensive parts can be implemented as 

dedicated hardware extension while keeping the design 

flexible due to software programmability. 

 

System Overview 
 

The area-optimized and highly configurable and 

extensible open-source NEORV32 RISC-V core [2] has 

been selected as initial base CPU. This generic processing 

core already provides hardware/software templates for 

implementing application-defined extensions as custom 

instructions (“CI”) and is configured as RISC-V 

rv32im_Zicsr architecture. The core is integrated into an 

application-specific system-on-chip (SoC) including 

embedded memories and further peripheral modules 

(illustrated in Fig. 1a). Exemplary image data is sampled as 

8-bit grey-scale values via a standard serial peripheral 

interface (SPI) and placed into an internal frame buffer 

(FBUF). The firmware uses a sliding-window approach to 

process the input image calculating the arithmetic mean and 

consecutively the standard deviation for each window. 

Pixel data is fetched from the framebuffer in a packed form 

by the CPU (four 8-bit pixels per 32-bit word) allowing to 

exploit sub-word parallelism using a SIMD-based 

processing approach. 

 

 
Figure 1: (a) SoC setup, (b) custom instruction word layout 

and (c) CI logic for the standard deviation 

Custom Instructions 

The RISC-V specification [1] defines several distinct 

opcodes being explicitly reserved for custom use. For this 
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work, we decided on using the custom-0 opcode 

(0b0001011) to implement custom R3-type instructions. 

This instruction format provides two source registers, one 

destination registers and two function-defining immediate 

field bit-fields (compare with Fig. 1b). In total, three 

custom instructions are implemented. Two of them use a 

SIMD-based processing approach to accelerate computing 

the arithmetic mean and the standard deviation:  

SIMD_sqdsum computes the accumulated sum of squared 

differences (for standard deviation) and returns the lowest 

32-bit of the accumulator to the destination register rd. 

SIMD_sum computes the accumulated sum over all sub-

words (for arithmetic mean) and also returns the lowest 32-

bit of the accumulator to the destination register. 

 

SIMD_sqdsum:   rd <=  accu+= ∑ (𝑚𝑒𝑎𝑛 − 𝑜𝑝𝑖)
2𝑁−1

𝑖=0  

SIMD_sum:   rd <=  accu+= ∑ 𝑜𝑝𝑖
𝑁−1
𝑖=0   

 

Both instructions can process up to eight 8-bit wide 

subwords (packed as rs1 and rs2 input operands) 

computing a single 32-bit accumulated result. The general 

architecture of the SIMD_sqdsum instruction, is shown in 

Fig. 1c. Single bits in the func bitfields of the custom 

instruction words are used to control processing steps (i.e. 

clearing the accumulator when starting the processing of a 

new window or writing data to the CI-internal mean 

register so no additional source port is required). 

Additionally, the standard deviation requires the 

computation of a square root. This function has also been 

implemented as custom instruction processing an unsigned 

32-bit integer and resulting a 32-bit fixed-point number 

with 16 fractional bits. All custom instructions operate in 

serial manner to keep hardware requirements at a 

minimum. Consequently, the CI’s functional units need 

several cycles to complete operations. 

Evaluation 

The processing platform is implemented and evaluated on 

a low-power Lattice iCE40 UltraPlus FPGA (iCE40UP5k) 

[3]. The design is clocked at 24MHz and uses the FPGA’s 

large-scale “SPRAM” primitives for instruction and data 

memories. The resource requirements for implementing the 

base RISC-V CPU core (“CPU” row) and the proposed ISA 

extensions (“CI” row) are listed in Table 1. A 64x64 pixel 

reference image with 8-bit grey-scale data per pixel is used 

as reference processing input. The image is fetched via SPI 

from FPGA-external storage. Table 2 presents the required 

clock cycles for processing an entire image using a window 

size of 7x7 pixels. The “SW-only” column lists the clock 

cycles for a plain-software implementation (i.e. no CIs). 

Utilizing the proposed ISA extensions provides a total 

speedup factor of 13. The computational bottleneck is 

identified to be the computation of the standard deviation. 

This part alone provides a speedup factor of 35 when using 

the proposed ISA extensions (“SW+CI” column). The total 

frame rate is increased from 0.91 frames per second (fps) to 

13.1 fps resulting in an overall speedup factor of 13.4. The 

hardware of all three custom instructions sums up to 530 

LUTs increasing the base CPU hardware by approx. 15 %, 

consuming about 10 % of the FPGA’s available LUT 

resources and not impacting the core’s critical path at all. 

 

Table 1: FPGA Utilization.  
Module LUTs FF BRAM DSP 

CPU 3451 1301 4 0 

CI 530 316 0 3 

Total 
4912/5280 

(93%) 

1809/52

80 (34%) 

20/30 

(66%) 

3/8 

(37%) 

 

Table 2: Processing Time Profiling.  
 SW-only SW+CI 

arithmetic mean 499 77 
std. deviation 5636 158 

frames/s 0.91 13.1 

Future Work 

In a next step, further computational bottlenecks that were 

identified during implementation will be addressed by 

extending the current CIs. For example, the addition of a 

third source register operand (i.e. rs3) to the CPU’s 

register file only requires two additional FPGA block 

RAMs and allows implementing R4-type instructions 

providing more data in parallel to the CI logic. Optimized 

memory access schemes allowing unaligned data accesses 

and interrupt driven double-buffering while sampling 

image data from the off-chip source are further options for 

increasing overall throughput. Replacing the current base 

CPU by more performant architecture, which are optimized 

for embedded image processing like [4], will also be 

evaluated. Furthermore, a power consumption-driven 

analysis of the developed hardware extensions is planned. 

Summary 

This work presents a custom ISA extension of a base 

RISC-V processor core in order to accelerate the processing 

of image data primarily focusing on computing arithmetic 

mean and standard deviation. Three custom instructions 

were developed motivated by the computational bottleneck 

of the reference application and implemented for a FPGA 

prototype. Using the proposed ISA extensions increases the 

overall frame rate by a factor of 14.4 while expanding the 

base core’s hardware requirements by just 15 %. 
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