
A RISC-V-based, Multi-threaded General Purpose
GPU Core

Tamer Eren1*, Mehmet Eyyüp Ergin1, Ömer Güzel1, and Hasan Erdem Yantır1

1The Scientific And Technological Research Council Of Türkiye (TÜBİTAK), BİLGEM

Abstract

Graphics processing units (GPUs) are specialized processors commonly used in computing devices for high quality visual
displays and parallel computations. GPUs offer several advantages over CPUs, including the ability to handle multiple
tasks simultaneously and efficiently process complex data. The demand for GPUs has grown in recent years due to
advancements in areas such as artificial intelligence, crypto mining and gaming. Addressing the sufficient GPU problem in
market, more flexible and cost-effective solutions designed with open-source methods may provide an alternative in both
academic and industrial applications. In Tübitak BİLGEM a multi-core multi-thread GPU architecture is being designed
with IMF extensions of RISC-V. First prototype was constructed with a single core (RISC-V IMF) and 5 threads which can
be adjusted parametrically by the user. The initial design was synthesized with TSMC 28nm technology at 2GHz with
Synopsys Design Compiler. Finally, functionality demonstration was performed with Digilent Nexys A7 FPGA at 100 MHz
to create the Tübitak Bilgem logo by calculating triangle points and resterazing with specific colors.

Introduction
A graphics processing unit (GPU) is a specialized type of

processor or video card that is commonly installed in
computing devices to provide high-quality visual display.
Basically, there are two main goals of using GPU in a
system. The first one is completing “general purpose”
calculations which belong to machine learning, block-
chain, artificial intelligence, mining, applications of
biophysics, and other disciplines that require rapid and
challenging computations [1]. The other goal is processing
dots, triangles, matrices, and pixels to form a picture and
maintaining this process until obtain a meaningful visual
output. Actually all of these tasks could be performed with
CPUs, but there are certain advantages of GPUs among
other type of processors. CPUs and GPUs differ in their
processing capabilities; while CPUs execute tasks one at a
time, GPUs can handle multiple tasks simultaneously by
dividing them up into smaller pieces and processing them
in parallel using numerous cores which allowing them to
efficiently process complex data and perform intensive
computations that would be impractical for a CPU to
handle alone [2]. As an alternative to the graphics cards that
are frequently used in the industry today, more flexible and
cost-effective solutions, which are designed entirely with
open-source methods can provide a solution in both
academic and industrial applications. In order make
graphics processing unit architectures more accessible and
easier to understand, some studies have been initiated
within Integrated Circuits Design and Training Laboratory
(TUTEL) in Tübitak BİLGEM. The General Purpose
Graphics Processing Unit (GP-GPU) Core prototype, has
been developed using the I, M, and F extensions of the
RISC-V ISA, and adopts a multi-thread structure.

* Corresponding author : tamer.eren@tubitak.gov.tr

Methodologies
The most significant purpose of the GPU cores is
increasing the throughput by processing a large amount of
data that arrives simultaneously. To obtain multiple data
outputs in a single clock cycle, data handling must be
paralleled at multiple levels. Almost every single GPU
cores utilize a parallel computing language like CUDA or
OpenCL as an initial step of this parallelization, which
divides the instructions sent by the CPU into kernels as a
workload. Then, each work package is distributed to
multiple threads of corresponding core. In literature, there
are two fundamental approaches for the thread mechanism.
The first one is, fetching the same instructions for each
thread but processing them on multiple data [3]. However,
the other one is distributing different instructions to
different threads [4]. The first method increases the
throughput of the cores, but the second one can complete
different programs simultaneously. Since data
parallelization was aimed for the first prototype of the
proposed GPU core, it was deemed appropriate to divide
different data into the threads which runs same instruction.
For the final step of the parallelization, a complete vector
processor unit (VPU), which executes the instructions of
the V extension of RISC-V ISA will be utilized the future
works. In summary, parallel processing of incoming data
will be achieved at three fundamental levels, which are
core, thread, and VPU. The compiler's abilities are also
essential for converting written code into RISC-V
instructions that can be executed in parallel by applying the
required optimizations. If the required transformations are
not achieved, OpenCL instructions may not be able to work
simultaneously with sufficient efficiency. The C function
given below, increments the variables a, b, and c by one at
each step, and repeats this process 250 times. Since the
processing of these variables is not dependent on each

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:tamer.eren@tubitak.gov.tr

other, the compiler can divide
this process into 3 different
loops, and different cores or
threads can work on these values
independently. In other words,
even in the compiler step, total

run time reduces significantly without any further
parallelization technique.

Discussion

Architecture

The core structure is built to meet the requirements of in-
order execution and consists of a 5-stage pipeline that
includes Fetch, Decode, Issue, Execute, and Writeback
operations. In the execute stage, there is an ALU for integer
operations, multiplication and division. Overall core design
was prepared in System Verilog and the initial prototype
was combined with a 2-level Cache hierarchy.

Figure 1 demonstrates the block diagram of the proposed
GP-GPU core’s architectures. In order to fit the design to
Digilent Nexys A7 FPGA, single core and 5-thread
configuration was synthesized by using 22032 LUTs, and
80 RAMB36E1 type Block RAMs.

Total on chip power was obtained as 0.47 W at 100 MHz
operating frequency. To observe the success of the
architecture and texture unit, visualization of the Tübitak
Bilgem logo was performed and the result is presented in
Figure 2. When an image needs to be printed on the screen,
the points of the triangles that make up this picture can be
loaded directly to the system (LSU) or calculated by the
GPU internally. After loading the point, triangles processed
by the texture unit using an 8-bit RGB color code for
triangle rasterization, and placement stages. Furthermore,
VPU is partially integrated for the initial version of the
design, and functional tests were completed for the applied

parts. Moreover, the GPGPU core utilizes custom
instructions designed for multi-core, multi-thread, and
texture operations to expand the RISC-V ISA, and
accelerate the operations along the pipeline, particularly in
the execution stage. For example, when the texture mode is
activated, a custom instruction with three source register
addresses is designed to quickly read the triangle corner
values from the source registers, allowing for more
operations to be completed in fewer cycles.
After synthesizing the Core in FPGA, in order to have an
idea about the performance in ASIC level, the proposed
model (a single RISC-V based GPU core) was synthesized
with TSMC 28nm technology at 2 GHz using Synopsys'
Design Compiler and IC Compiler tools.

Future Works

 In a multi-core configuration, different cores will become
responsible for different parts of the screen, which will lead
to both increased resolution and speed. Moreover, parallel
data operations such as matrix multiplication becomes
faster when multiple cores were utilized. For the later
versions of the core, RTL prototyping, synthesis, and PnR
with 16 threads and 256 cores are aimed to be completed.

Furthermore, while the single-core version includes a DDR
connection, the aim is to preserve and upgrade this
interface for the multi-core configuration. Figure 3 shows
the block diagram of the next version which will utilize 16
cores and DDR connection. Finally, the cores and threads
inside the GPU will be activated and deactivated depending
on the processing load by the central processing unit and
OpenCL, which indirectly controls also the enabling power
consumption of the overall design.

References
[1] J. Peddie, The history of the GPU - steps to invention. Springer
 International Publishing AG, 2023. pp. 333-345.
[2] S. Asano, T. Maruyama and Y. Yamaguchi, "Performance comparison
 of FPGA, GPU and CPU in image processing," 2009 International
 Conference on Field Programmable Logic and Applications, Prague,
 Czech Republic, 2009, pp. 126-131, doi: 10.1109/FPL.2009.5272532.
[3] A. Alawneh, M. Khairy and T. G. Rogers, "A SIMT Analyzer for
 Multi-Threaded CPU Applications," 2022 IEEE, ISPASS Singapore,
 2022, pp. 248-250, doi: 10.1109/ISPASS55109.2022.00037.
[4] Y. Yang and H. Zhou, “Cuda-NP,” ACM SIGPLAN Notices, vol. 49,
 no. 8, pp. 93–106, 2014. doi.org/10.1145/2692916.2555254

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

Figure 1: Block Diagram of the proposed GP-GPU core

Figure 2: Tübitak Bilgem Logo

Figure 3: Block level diagram of the multi-core version

 void loop_250(){
 int a = 0, b = 0, c = 0;
 for (int i = 0; i < 250; i++){
 a++; b++; c++; }
}

	Abstract
	Introduction
	Methodologies
	Discussion
	Future Works
	References

