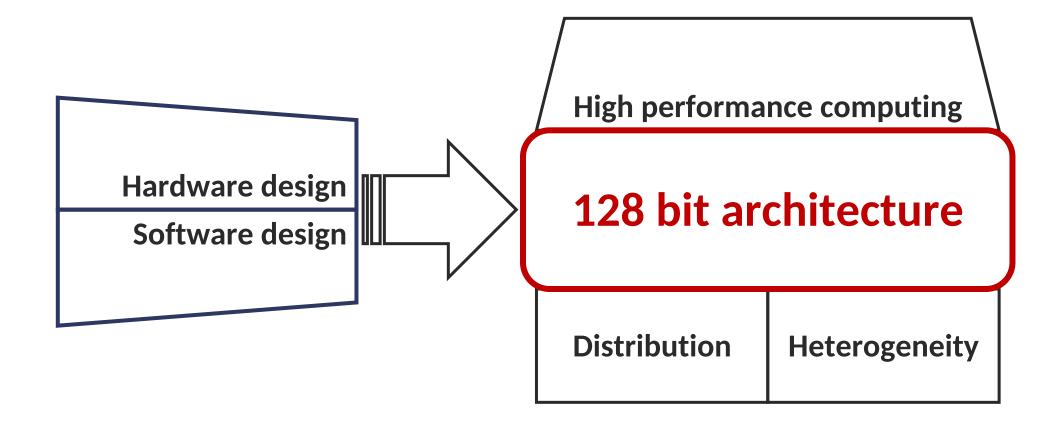


Maplurinum — One Machine out of Many or We had 64-bit, yes. What about second 64-bit?

<u>Mathieu Bacou¹</u>, Adam Chader¹, Chandana Deshpande², Christian Fabre³, César Fuguet³, Pierre Michaud⁴, Arthur Perais², Frédéric Pétrot², Gaël Thomas⁵, Jana Toljaga¹, Eduardo Tomasi^{2,3}


¹ Samovar, Télécom SudParis, IMT, IP Paris
² Université Grenoble Alpes, CNRS, Grenoble INP, TIMA
³ Université Grenoble Alpes, CEA, List
⁴ Inria, Université de Rennes, IRISA
⁵ Inria Saclay
French government grant ANR-21-CE25-0016
ANR project « Maplurinum — Machinæ pluribus unum » (Make) one machine out of many

RISC-V Summit Europe, Munich, 27th June 2024

Cez

Overview

HPC TOP 500 — Status & Trends

European machines in the TOP 500 as of November 2023:

- #5 HPE Cray 2,752,704 cores Fi
- #6 Bull 1,824,768 cores It
- #8 Bull 680,960 cores Es
- \rightarrow Increasing parallelism and distribution

Meanwhile:

 \rightarrow Trend towards heterogeneity: GPUs, FPGAs, TPUs, variable precision FPUs...

Hard to use efficiently, hard to program.

Systems	2012 BG/Q Computer	2022	Difference Today & 2022
System peak	20 Pflop/s	1 Eflop/s	O(100)
Power	8.6 MW (2 Gflops/W)	~20 MW (50 Gflops/W)	
System memory	1.6 PB (16*96*1024)	32 - 64 PB	O(10)
Node performance	205 GF/s (16*1.6GHz*8)	1.2 or 15TF/s	<i>O</i> (10) - <i>O</i> (100)
Node memory BW	42.6 GB/s	2 - 4TB/s	O(1000)
Node concurrency	64 Threads	O(1k) or 10k	O(100) - O(1000)
Total Node Interconnect BW	20 GB/s	200-400GB/s	O(10)
System size (nodes)	98,304 (96*1024)	O(100,000) or O(1M)	O(100) - O(1000)
Total concurrency	5.97 M	O(billion)	O(1,000)
MTTI	4 days	O(<1 day)	- O(10)

Source: J. Dongara, Grenoble Sep. 2019. Big thanks to Henri-Pierre Charles (CEA).

3

A RISC-V HPC machine by 2030: vision and rationale

At historic rates of growth, it is possible that greater than 64 bits of address space might be required before 2030.

Let's assume that a full RISC-V 128 bit HPC machine could have (wild guess) 100 x 10⁶ cores, as 1,000,000 heterogeneous clusters of 100 cores each with o(10 TB) RAM/cluster.

The challenge is how to take advantage of RISC-V and 128 bit to •Manage the heterogeneity of the machine

•Optimize and simplify the operating system stack

Increase the performance in distributed computing

Do not beat around the bush: flat 128-bit address spaces will be adopted as the simplest and best solution. "There is only one mistake that can be made in computer design that is difficult to recover from — not having enough address bits for memory addressing and memory management."

Bell and Strecker, ISCA-3, 1976.

RV128 spec is not frozen at this time, as there might be need to evolve the design based on actual usage of 128-bit address spaces.

Opportunities and challenges for RISC-V and 128 bit

Architecture and Microarchitecture

What could and should change with 128 bit addresses?

- 1. Allow for disaggregated hardware as a single system image using RV128 as a common denominator
- 2. RV128 does not mean fully 128 bit microarchitecture

Operating System & Software

What would a 128 bit OS look like?

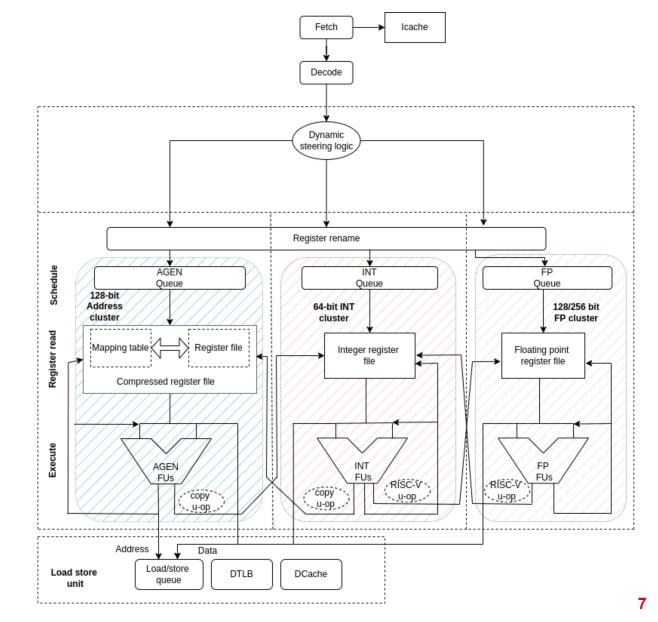
- 1. Redesign the process abstraction using hardware-assisted virtualization to bypass the kernel
- 2. Access to the hardware goes through a unified 128 bit address space

Opportunities and challenges for RISC-V and 128 bit

Architecture and Microarchitecture

What could and should change with 128 bit addresses?

- 1. Allow for disaggregated hardware as a single system image using RV128 as a common denominator
- 2. RV128 does not mean fully 128 bit microarchitecture


Operating System & Software

What would a 128 bit OS look like?

- 1. Redesign the process abstraction using hardware-assisted virtualization to bypass the kernel
- 2. Access to the hardware goes through a unified 128 bit address space

Opportunities and challenges: microarchitecture

- Most 128-bit operations will (likely) manipulate addresses
- Opportunity for clustered microarchitecture
 - ADDR (128b) vs. INT (64b) vs. FP/SIMD (128/256/512...)
 - ISA-agnostic (hardware steering)
- Also
 - 128-bit pointers likely very compressible -> memory layout to favor cache compression (put all your pointers together)

Opportunities and challenges for RISC-V and 128 bit

Architecture and Microarchitecture

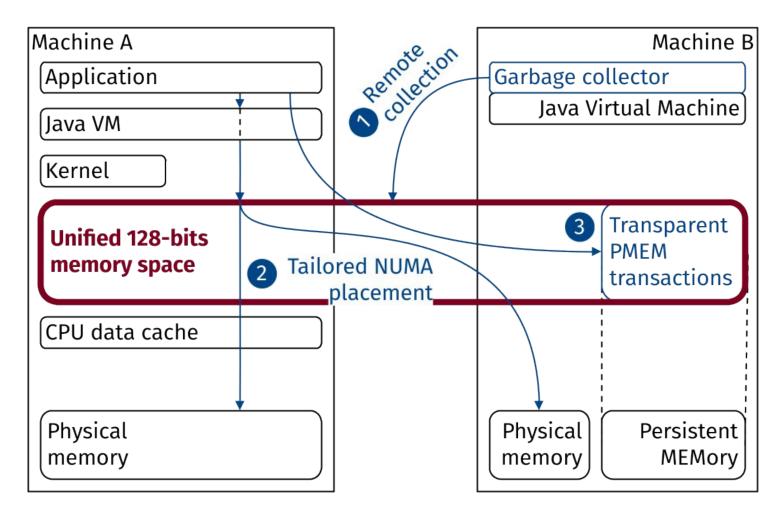
What could and should change with 128 bit addresses?

- 1. Allow for disaggregated hardware as a single system image using RV128 as a common denominator
- 2. RV128 does not mean fully 128 bit microarchitecture

Operating System & Software

What would a 128 bit OS look like?

- 1. Redesign the process abstraction using hardware-assisted virtualization to bypass the kernel
- 2. Access to the hardware goes through a unified 128 bit address space


Opportunities and challenges: OS & software

The operating system is just a controller that grants access to the hardware.

 Common interface: unified 128 bit memory space via hardware-assisted virtualization

Many uses:

- 1. Disaggregated runtimes (e.g. Java VM)
 - Remote garbage collector to prevent cache pollution at the application side
- 2. NUMA placement piloted by the app
- 3. Direct transparent use of Persistent Memory via transactions based on hardware memory management

4. ...

Conclusion

- 1. RISC-V 128 bit is an opportunity for hardware software co-design
- 2. The opportunities and real issues are in parallel and distributed aspects of future RISC-V 128 bit machines, not so much in *classical* ISA extensions
 - 1. Disaggregated OS over a unified address space
 - 2. Common general purpose 128 bit architecture over heterogeneous hardware
- Though 128 bit machines are probably far away, such work will take time, so we are starting now!

Questions?

Please come see our poster today at D-04

Work funded by the project « **Maplurinum — Machinæ pluribus unum** » (Faire) une seule machine avec plusieurs (Make) one machine out of many

French gov. grant n° ANR-21-CE25-0016

