

OpenASIP: Open-Source Development Platform for RISC-V Application-Specific Instruction-Set Processors

Kari Hepola, Joonas Multanen and Pekka Jääskeläinen

Customized Parallel Computing (CPC) Group, Tampere University, Finland

https://www.tuni.fi/cpc

https://github.com/cpc/openasip

Background

- Application-specific instruction-set processors (ASIPs)
- Co-design toolsets are often proprietary
- Demand for customized processors
 - Better energy efficiency and performance for a set of target applications
 - HW/SW co-design toolsets make customization and programming easier

OpenASIP Toolset

• Architecture template

- Transport triggered architecture (TTA)
- Low-level architecture with high scheduling freedom

Open source

- Toolset LGPL v2.1
- Generated hardware MIT
- Extensive support for TTA-based ASIPs
 - Custom operations
 - Retargetable LLVM-based compiler
 - Hardware generation

RISC-V Support in OpenASIP

- Extended for RISC-V ASIPs
- Support for RISC-V custom instructions
 - Instruction intrinsics
 - Retargetable compiler
 - RTL generation
- Rapid hardware generation flow

Compiler Adaptation

%5 = load i32 %4

- LLVM RISC-V backend
- OpenASIP backend as a dynamic library
- Preemit pass
 - Replace intrinsics with opcode and operand binaries
- Backend generation work in progress
 - Allows automatic instruction selection

Operation Descriptions

- Operation DAGs (Directed Acyclic Graphs)
 - Describe a custom operation with a chain of already implemented operations

- HDL snippets
 - Add a HDL snippet that describes the semantics of the operation
 - Practical when implementing bit manipulation operations


```
for bits in 0 to 7 loop
    op3(bits) <= op1(7-bits);
end loop;</pre>
```


FUGen

- Integrated with OpenASIP processor generation
- Chains operations in DAG-based descriptions
- Connects signals of HDL snippets to the function unit IO
- Automatically adds pipeline registers based on the architecture definition

Example: SHA256

- Design an ASIP for SHA256
- Design steps:
- 1. Investigate the application for custom operation candidates
- 2. Add the operation descriptions to an operation set library
- 3. Add the new operations to the processor description
- 4. Add intrinsic calls to the application source code

1. Identify Custom Operation Candidates

- Often easy for the application developer
- Program hot spots
- Bit manipulations
- Hardware complexity

 $\begin{array}{l} \mathrm{sha256sig0} &: rotr^{7}(in) \oplus rotr^{18}(in) \oplus (in \gg 3) \\ \mathrm{sha256sig1} &: rotr^{17}(in) \oplus rotr^{19}(in) \oplus (in \gg 10) \\ \mathrm{sha256sum0} :: rotr^{2}(in) \oplus rotr^{13}(in) \oplus rotr^{22}(in) \\ \mathrm{sha256sum1} :: rotr^{6}(in) \oplus rotr^{11}(in) \oplus rotr^{25}(in) \end{array}$

2. Adding New Operation Descriptions

Create a new entry

Operation	properties
Operation properties Name: sha256sig0 Reads memory Writes memory Can trap Has side effects Clocked	Operation description
Affected by	Operation inputs
operation	operand type element width eleme
	1 SintWord 32 1
ABS - Add Delete	Add Modify Delete
Affects	Operation outputs
operation	operand type element width eleme
ABS v Add Delete	Add Modify Delete
Operation behavior module not defined. Open Open DAG	OK Cancel

Add a DAG-description to the entry

3. Modifying the Processor Description

File Edit View Tools Options Help														
New	Spen (F Save	Delete	Modify	Coom +	Coom -	Fit Win	Details	م Options	? Help				
rv32im.adf	F													
0 • 1 • 2 • 3 •							SHA256SIC SHA256SIC SHA256SU S	DOU 	Cho		DIV t latency Operation	n description		

3. Modifying the Processor Description

4. Modify the Source Code

- Add the intrinsic calls
 - Definitions automatically generated by the compiler
- Automatic instruction selection:
 - Sometimes not feasible
 - Long operation chains
 - Compiler backend generation
 - Not currently supported for RISC-V

Hardware Generation

- Command line tool
- Implementation definition file
 - References FUs and RFs
 - Optional
- Picks RFs and FUs from hardware databases
 - Generates FUs if not available
 - FUGen
- Decoder and datapath generation

Results

- Synthesized with a 28 nm ASIC technology.
 - 49% reduction in run time
 - Negligible 1.5% area overhead
 - 1.4% reduction in clock frequency
- Rapid ASIP design without any RTL written by the designer.

Future Work

- Integration of the hardware generation with CVX-IF
 - Enables to generate instruction set extensions to any RISC-V processor implementing CVX-IF
 - TRISTAN WI2.5.6
- Backend generation
 - Automatic instruction selection

Conclusions

- HW/SW co-design toolset for RISC-V ASIPs
 - Generate and program customized RISC-V processors
 - Retargetable compiler
 - Hardware generation down to RTL
- Modular components
 - Operation set libraries
 - Hardware databases
 - Architecture definition file
- Processor customization without using HDLs
 - DAG-based operation descriptions

Thank you!

Kari Hepola, Joonas Multanen and Pekka Jääskelänen Customized Parallel Computing (CPC) Group, Tampere University, Finland <u>https://www.tuni.fi/cpc</u> <u>https://github.com/cpc/openasip</u>