
Open Virtual Platforms APIs Enable

High-Quality, Easily Maintained

Processor Models

Larry Lapides, Lee Moore, Simon Davidmann

27 June 2024

© 2024 Synopsys, Inc. 2

Open Virtual Platforms (OVP) APIs Enable

High Quality RISC-V Models

• Use cases and requirements for RISC-V processor models

• ImperasFPM fast processor model architecture

• OVP APIs

• Case studies

• Summary

© 2024 Synopsys, Inc. 3

OVP APIs Enable High Quality RISC-V

Models

• Use cases and requirements for RISC-V processor models

• ImperasFPM fast processor model architecture

• OVP APIs

• Case studies

• Summary

© 2024 Synopsys, Inc. 4

RISC-V Processor Model Use Cases

CPU-centric

software development
Many core system simulation

Entry level verification
Virtual

Prototypes

Toolchain development

and testing

Compliance testing

Hardware accelerated verification

(HAV)

Processor

Verification

Architecture

exploration

Regression testing

RISC-V Processor Model

© 2024 Synopsys, Inc. 5

RISC-V Processor Model Requirements are Driven by the

Use Cases
This is a lot more than just an Instruction Set Simulator (ISS)

• Model the ISA, including all versions of the ratified spec, and stable unratified extensions

• Easily update and configure the model for the next project – model cannot be “one-off”

• User-extendable for custom instructions, registers, …

• Model actual processor IP, e.g. Andes, SiFive, OpenHW CORE-V, MIPS, ARC-V, …

• Well-defined test process including coverage metrics

• Interface to other simulators, e.g. SystemVerilog, SystemC, …

• Interface to software debug tools, e.g. GDB/Eclipse, Lauterbach, GHS, …

• Interface to software analysis tools including access to processor internal state, etc.

• Interface to architecture exploration tools including extensibility to timing estimation

© 2024 Synopsys, Inc. 6

OVP APIs Enable High Quality RISC-V

Models

• Use cases and requirements for RISC-V processor models

• ImperasFPM fast processor model architecture

• OVP APIs

• Case studies

• Summary

© 2024 Synopsys, Inc. 7

Components of ImperasFPM RISC-V Processor Models

▪ Models are built in C using

OVP APIs

▪ APIs are supported by a

simulator engine

▪ All models have both C and

SystemC/TLM2 native

interfaces

Instruction Decode

Instruction

Disassembly

Debug

Interface

TLB / MMU

MMC Models

Libraries

• Add CPU-aware information for software

and architecture analysis tools

• Add processor independent I/O support

Exception Modeling

Asynchronous Events

Instruction Behavior

Tightly-Coupled Cache

P
ro

c
e

s
s
o

r
S

ta
te

S
h

a
re

d
 R

e
s
o

u
rc

e

Create and manage resources (e.g. registers)

shared between multiple processor instances

Add memory-based

components (e.g. loosely-

coupled caches, devices)

Main components

© 2024 Synopsys, Inc. 8

ImperasFPMs (Fast Processor Models) for RISC-V

• Base Model implements RISC-V specification in full

• Fully user configurable to select ISA extensions and

versions

• Pre-defined configurations and custom instructions for

processor IP vendors

• User extensions built in a separate library do not

perturb the verified Base Model, help reduce

maintenance

• Because every ImperasFPM uses the RISC-V Base

Model, and including users of both commercial and

free tools, over 150 companies, organizations and

universities have used the ImperasFPM

ImperasFPM

User

Extension:

custom

instructions

& CSRs

RISC-V

Base Model
Model Config

250+ params

© 2024 Synopsys, Inc. 9

Models Drive Customization

• In the RISC-V world, custom instructions are added

to optimize a specific application or set of

applications within a domain

– “Domain-Specific Processors”

• Models let you explore custom instructions quickly

– Much faster to develop/analyze custom instructions in the model

than by writing RTL

– Better profiling data and other analytical tools

– Better software debug capabilities

• Methodology

– Start by characterizing the application to be optimized

– Then add custom instructions, evaluate and iterate

Algorithm

Simulate

w/ RISC-V

Model

Compile

Analyze
Add Custom

Instructions

Hand-Code

ASM

User

Extension:

custom

instructions

& CSRs

RISC-V

Base Model

Model Config

250+ params

ImperasFPM

RISC-V

Reference Model

© 2024 Synopsys, Inc. 10

OVP APIs Enable High Quality RISC-V

Models

• Use cases and requirements for RISC-V processor models

• ImperasFPM fast processor model architecture

• OVP APIs

• Case studies

• Summary

© 2024 Synopsys, Inc. 11

ImperasFPM Architecture

• OVP APIs support …

– Model functionality

– Processor analysis tools

• APIs are supported by a Just-In-Time (JIT) binary

translation simulator engine

– Translates RISC-V instructions to x86 on host PC

– Adds in analysis “instrumentation” to the simulator, so analysis is

non-intrusive

• APIs are publicly available:
https://github.com/OVPworld/information

• The OVP APIs have been used to develop models of 18

different instruction set architectures (ISAs), including 3

proprietary ISAs

– Matured by supporting ISAs such as Arm and MIPS before being

used for RISC-V

ImperasFPM

User

Extension:

custom

instructions

& CSRs

RISC-V

Base Model
Model Config

250+ params

OVP APIs

Just-In-Time Binary Translation Simulator Engine

https://github.com/OVPworld/information

© 2024 Synopsys, Inc. 12

Why the ImperasFPM Architecture Works Well

• Performance optimization: When a specific API’s performance is improved, it impacts all the models using

that API

• Maintenance: When the functionality of a specific API is fixed, it flows to all the models using that API

• Documentation: Having APIs leveraged over a range of models enables better documentation of the APIs

(and of the models)

• Tool interfaces: When a new model is built, existing tools automatically work with the new model

• As a result, many fewer engineers are needed to develop and maintain the ImperasFPM models

• As a result, ImperasFPM users can easily add custom features to their models

© 2024 Synopsys, Inc. 13

OVP APIs Enable High Quality RISC-V

Models

• Use cases and requirements for RISC-V processor models

• ImperasFPM fast processor model architecture

• OVP APIs

• Case studies

• Summary

© 2024 Synopsys, Inc. 14

ImperasFPM Use Cases

ImperasFPM

Custom

extensions

RISC-V

Base

Model

Model

Config

CPU-centric

software development
Many core system simulation

Entry level verification
Virtual

Prototypes

Toolchain development

and testing

Compliance testing

Hardware accelerated verification

(HAV)

Processor

Verification

Architecture

exploration

Regression testing

© 2024 Synopsys, Inc. 15

Using the same model for both hardware and software

verification enables significant reduction in SoC bring up time

ImperasFPM

Custom

extensions

RISC-V

Base

Model

Model

Config

CPU-centric

software development
Many core system simulation

Entry level verification
Virtual

Prototypes

Toolchain development

and testing

Compliance testing

Hardware accelerated verification

(HAV)

Processor

Verification

Architecture

exploration

Regression testing

© 2024 Synopsys, Inc. 16

RISC-V Processor Verification Environment Enabled by

RISC-V Reference Model

• ImperasFPM is the configurable,

extendable RISC-V reference model

• Continuous comparison and checking

of architectural state

• Detects synchronous and

asynchronous bugs

• Complete RISC-V architectural

Functional Coverage model

RISC-V

RTL

& memory

Log

Debug driver

Interrupt driver
ImperasDV

Test

ImperasFPM

RISC-V

Reference

Model

ImperasFC

RISC-V

Functional

Coverage

RTL Simulator

HW-SW

Debug

RVVI

Tracer

© 2024 Synopsys, Inc. 17

Virtual Prototyping for Early Software Development Enabled

by RISC-V Reference Model
Virtual prototypes now a mainstream technology for embedded software development/test

• Shift left software development

• Comprehensive software development environment key for AI,

automotive, other industries where software optimization and

certification are required

• Support for …

– all major RISC-V processor IP vendors

– customers building their own RISC-V processor

• Enables Continuous Integration / Continuous Deployment

(CI/CD) methodology
VDK Analysis

Infrastructure

VDK Debug

Server

ImperasFPM

RISC-V

Reference Model

Virtual prototypes with ImperasFPM RISC-V models typically

achieve 500-1,000 million instructions per second performance

(e.g. boot Linux in ~6 sec on host PC)

© 2024 Synopsys, Inc. 18

Case Study: Adding CHACHA20 Encryption Instructions to

Improve Performance of Character Stream Encoder

Bits Bit Value Description

6 – 0 00 010 00 Custom-1 instruction class decode

11 – 7 xxxxx Identify the result register

14 – 12 000

001

010

011
1xx

QR1

QR2

QR3

QR4
Undefined

19 – 15 xxxxx Identify source register 1

24 – 20 xxxxx Identify source register 2

31 – 25 0000000 Instruction decode

• This instruction extension library will be used to develop four
custom instructions

• Each uses the same base behavior
• Different rotation value

• When implementing new instructions, start with the decode
table, including

• The fixed fields defining the instruction class
• The fields defining the source and result registers to be

used
• In the RISC-V ISA these will be R-Type instructions in custom-1

decode space

• Before adding custom instructions, character stream encoder software took ~1.3 billion instructions to execute
• Profiling showed “processLine” function took 21% of execution time
• Now add custom instructions to improve performance

© 2024 Synopsys, Inc. 19

Instruction Decode Table

//

// Create the RISCV decode table

//

static vmidDecodeTableP createDecodeTable(void) {

vmidDecodeTableP table = vmidNewDecodeTable(RISCV_INSTR_BITS, RISCV_EIT_LAST);

// handle custom instruction

DECODE_ENTRY(0, CHACHA20QR1, "|0000000..........000.....0001011|");

DECODE_ENTRY(0, CHACHA20QR2, "|0000000..........001.....0001011|");

DECODE_ENTRY(0, CHACHA20QR3, "|0000000..........010.....0001011|");

DECODE_ENTRY(0, CHACHA20QR4, "|0000000..........011.....0001011|");

return table;

}

• This decode table is then constructed in the extension library constructor

• Stored in the vmiosObject structure

© 2024 Synopsys, Inc. 20

Instruction Behavior is Defined Using VMI Morph Time

Functions
//

// Emit core implementing exchange instruction

//

Static void emitChaCha20(

 vmiProcessorP processor,

 vmiosObjectP object,

 Uns32 instruction,

 Uns32 rot1

) {

 // extract instruction fields

 Uns32 rd = RD(instruction);

 Uns32 rs1 = RS1(instruction);

 Uns32 rs2 = RS2(instruction);

 vmiReg reg_rs1 = vmimtGetExtReg(processor, &object->rs1);

 vmiReg reg_rs2 = vmimtGetExtReg(processor, &object->rs2);

 vmiReg reg_tmp = vmimtGetExtTemp(processor, &object->tmp);

 vmimtGetR(processor, RISCV_REG_BITS, reg_rs1, object->riscvRegs[rs1]);

 vmimtGetR(processor, RISCV_REG_BITS, reg_rs2, object->riscvRegs[rs12]);

 vmimtBinopRRR(32, vmi_XDR, reg_tmp, reg_rs1, reg_rs2, 0);

 vmimtBinopRC(32, vmi_ROL, reg_tmp, rot1, 0);

 vmimtSetR(processor, RISCV_REG_BITS, object->riscvRegs[rd], reg_tmp);

}

© 2024 Synopsys, Inc. 21

Adding Custom Instructions Reduces Number of Instructions

Executed, Reduces Execution Bottleneck
Model -> API -> Simulator architecture allows tools to just work automatically

Simulation performance increase from

1.1 to 1.3 billion instructions per second
Key “processLine” function now takes

<15% of execution time

CHACHA20 instructions in

instruction trace

CHACHA20 instructions in debugger

disassembly view

© 2024 Synopsys, Inc. 22

OVP APIs Enable High Quality RISC-V

Models

• Use cases and requirements for RISC-V processor models

• ImperasFPM fast processor model architecture

• OVP APIs

• Case studies

• Summary

© 2024 Synopsys, Inc. 23

OVP APIs Enable High Quality RISC-V

Processor Models

• RISC-V processor models are at the heart of RISC-V processor

development

• An API-based processor model architecture can more easily meets all the

use case requirements

• An API-based processor model architecture can provide multiple benefits

including quality, flexibility, extensibility, high performance, ease of

documentation

• The OVP APIs used in the ImperasFPM RISC-V processor models provide

all these benefits, while reducing the resources required for processor

development and maintenance

• These benefits have been proven with results from hundreds of projects,

including ~30 tape outs enabled by processor verification using

ImperasFPM golden reference models

© 2024 Synopsys, Inc. 24

Our Technology

Your Innovation
THANK YOU

Larry Lapides

Larry.Lapides@synopsys.com

	Default
	Folie 1: Open Virtual Platforms APIs Enable High-Quality, Easily Maintained Processor Models
	Folie 2: Open Virtual Platforms (OVP) APIs Enable High Quality RISC-V Models
	Folie 3: OVP APIs Enable High Quality RISC-V Models
	Folie 4: RISC-V Processor Model Use Cases
	Folie 5: RISC-V Processor Model Requirements are Driven by the Use Cases
	Folie 6: OVP APIs Enable High Quality RISC-V Models
	Folie 7: Components of ImperasFPM RISC-V Processor Models
	Folie 8: ImperasFPMs (Fast Processor Models) for RISC-V
	Folie 9: Models Drive Customization
	Folie 10: OVP APIs Enable High Quality RISC-V Models
	Folie 11: ImperasFPM Architecture
	Folie 12: Why the ImperasFPM Architecture Works Well
	Folie 13: OVP APIs Enable High Quality RISC-V Models
	Folie 14: ImperasFPM Use Cases
	Folie 15: Using the same model for both hardware and software verification enables significant reduction in SoC bring up time
	Folie 16: RISC-V Processor Verification Environment Enabled by RISC-V Reference Model
	Folie 17: Virtual Prototyping for Early Software Development Enabled by RISC-V Reference Model
	Folie 18: Case Study: Adding CHACHA20 Encryption Instructions to Improve Performance of Character Stream Encoder
	Folie 19: Instruction Decode Table
	Folie 20: Instruction Behavior is Defined Using VMI Morph Time Functions
	Folie 21: Adding Custom Instructions Reduces Number of Instructions Executed, Reduces Execution Bottleneck
	Folie 22: OVP APIs Enable High Quality RISC-V Models
	Folie 23
	Folie 24

