
Let’s make a
standard for CHERI-
RISC-V

To make memory safety available for everyone,
from small cores to high performance

Tariq Kurd, Chief Architect at Codasip

RISC-V Summit Munich, June 2024

2© 2024 Codasip. All rights reserved.

CHERI provides deterministic memory safety

• Memory safety vulnerabilities are costly. For example, losses due to the well-known OpenSSL heartbleed bug

are estimated to exceed $500 million. So there is increasing interest, even from the White House and UK

government, to mitigate these vulnerabilities.

• CHERI-RISC-V is the comprehensive solution to mitigating 70% of vulnerabilities

• See the numerous posters in the expo hall on the subject

3© 2024 Codasip. All rights reserved.

CHERI concept: deterministic bounds and permissions
Spatial memory safety example, temporal safety also supported

Replacing pointers by capabilities – with precise checks and hardware exceptions

Data buffer

Other data…

Pointer

Pointer + offset

Out of bounds
access = danger!

Capability

B
o

u
n

d
ed

 b
o

x

Out of bounds access
trapped by hardware

exception

Data buffer: bounds
and permissions
checked on dereference

Other data…

Without CHERI With CHERI

4© 2024 Codasip. All rights reserved.

CHERI exists on multiple architectures and across
multiple implementations

• It was originally based on MIPS, now deprecated

• RISC-V is now the base architecture, for the CHERI v9 architecture from

Cambridge University (known as CHERI-RISC-V)

• CHERI is available on an ARMv8 (Morello) development board.
• This can be demonstrated as a workstation running CHERI BSD.

• Server class NEOVERSE N1

• An x86 prototype sketch is also available

• CHERIoT exists as a branch of CHERI
• Tiny implentations for IoT devices

• CHERI-RISC-V aims to standardise CHERI for the whole range from IoT to

Application Cores, to Server Cores

5© 2024 Codasip. All rights reserved.

Getting to the RISC-V GitHub repo

• Codasip started working with Cambridge University on the CHERI-RISC-V
specification after a discussion at the RISC-V Summit in Barcelona in June
2023

• Codasip were already working in the background on a different version of the
CHERI specification document
• Extracting well defined features from CHERI v9

• Postponing experimental and less well-defined features
• Defining a stable base architecture

• Filling in gaps, such as there being no debug specification
• Written as an implementation spec
• Covers all the necessary questions asked by the implementation and verification

teams to allow the product to be built

• Codasip tested this spec on their A730-CHERI core development

6© 2024 Codasip. All rights reserved.

The Demo at the RISC-V Summit Santa Clara Nov ‘23

Carl Shaw and Troy Jones showed the

A730-CHERI Application Core prototype

detecting a buffer overrun on the stack

before the stack canary spotted it,

running on an FPGA

7© 2024 Codasip. All rights reserved.

CHERI-RISC-V v0.7.0

https://github.com/riscv/riscv-cheri/releases/January 2024

After review with Cambridge Uni, the Codasip CHERI spec
document became v0.7.0 on GitHub:
https://github.com/riscv/riscv-cheri/releases/

The Task Group was formed

Then the real specification work started refining the architecture

https://github.com/riscv/riscv-cheri/releases/

8© 2024 Codasip. All rights reserved.

RV32: Optimised Format since CHERIv9

The improved encoding has

• 0 to 2-bit software defined permissions

• 13 to 5-bit architectural permissions with encoding room for expansion

• O to 4-bit reserved field (for new features such as local/global capability access)

• 4 otype bits to 1-bit sealed

• The mantissa has increased from 8 to 10-bits for better precision

9© 2024 Codasip. All rights reserved.

CHERIv9 Invalid address handling: the problem

Invalid addresses
may change when
written to registers
such as MEPC for

Sv39 or Sv48

Is the new address in
bounds or not? Do we

need to check after
changing the address?

It’s not cheap to do
so.

10© 2024 Codasip. All rights reserved.

Illegal address handling: the solution

•For running CHERI software only

•Take an invalid address CHERI exception, so we don’t care if the address is representable or in bounds or not

•Existing RISC-V code on a CHERI core still takes an access fault

A new CHERI exception type for illegal addresses instead of a bounds check

•Previously CHERI required full 64-bit address comparators

•Now we need 39-bit for Sv39, 48-bit for Sv48

•This gives a nice power and area saving, and is simpler

•This also compatible with pointer masking as we don’t need to compare the masked range of the address

Reduces the size of the bounds comparators

11© 2024 Codasip. All rights reserved.

Other changes?

There are
many other

changes since
CHERI v9

Trying to
make the

adoption of
CHERI-RISC-V

easier

Remove SCR
space, and
map them

into the CSR
space

Removed
Duplicate

Mnemonics

JALR/CJALR,
LC/CLC etc.

Minimising
the ISA

Easy Mode
Switching

Avoids supporting lots of
load/ stores which

execute in the other
mode, as on Morello

12© 2024 Codasip. All rights reserved.

What extensions do we have?
Extension Status Description

ZcheriPurecap Stable – bug fixes only Base architecture for a CHERI purecap machine

ZcheriHybrid Stable – bug fixes only Implies ZcheriPureCap. Adds legacy RISC-V support

Zabhlrsc Stable – bug fixes only Byte/half LR/SC support (independent of CHERI)

Zstid Software prototyping Secure thread ID for Compartmentalisation

ZcheriHypervisor Prototype, need PR CHERI and Hypervisor support

ZcheriVector Prototype, need PR CHERI and Vector optimised support to allow Vector capability memcpy

ZcheriPTE Prototype, PR needs update Optimised Revocation support by supporting capability accessed and dirty in
page tables

ZcheriTransitive Prototype, PR needs update Support for reducing capability permissions on loading

ZcheriMultiLevel Research, need PR Support for locally/globally accessible capabilities with multiple levels

ZcheriTraceTag Research, Need PR Support for data capability trace with tags

ZcheriSanitary Research, Need PR Support for cleaning capabilities on compartment switching

ZcheriSystem Research, Need PR Support for exposing compartment IDs to the system (a better WorldGuard)

13© 2024 Codasip. All rights reserved.

Getting to RVA23 Compatibility

We’re currently have RVA22+CHERI fully working for mandatory extensions. We want to get to RVA23+CHERI, which has

some gaps to fill:

• Vector+CHERI: Fairly simple – check every unmasked byte of every load/store against the bounds

• But the devil is in the details for complex sequenced masked load/stores

• Indexed loads where the base is zero and the entire address is in the element are a problem: the capability will need to

have the address field set to zero, and so the bounds must start at zero

• Consider adding VLC/VSC to load/store full vector registers including caps, and an associated VCMV to move a whole vector

register to support Vector capability memcpy

• Vector+Hypervisor: more on the next talk

• Pointer masking: seems easy – needs confirmation

14© 2024 Codasip. All rights reserved.

Code Size Reduction

→Already in the CHERI-RISC-V spec

• JVT becomes a capability

Zcmt – table jump

• The data-width doubles, and only RV32 is of interest, so
effectively use the RV64 stack layout for RV32-CHERI-RISC-V

Zcmp – push/pop

15© 2024 Codasip. All rights reserved.

Conclusions

CHERI is 100% compatible with RVA22 mandatory extensions

Will soon be with RVA23 too

We’re working on CHERIoT compatibility

We want one ratified specification to cover all variants

CHERI runs existing RISC-V code with 100% compatibility

This makes adoption of CHERI much easier

16© 2024 Codasip. All rights reserved.

The future….

All new Codasip cores will have CHERI

CHERI world domination – all cores memory safe..?

The CHERI Alliance will grow – first members announced

17© 2024 Codasip. All rights reserved.

That’s all folks
• Collaborate with us: https://github.com/riscv/riscv-cheri

• Join the TG and the bi-weekly meeting

• Tell us what’s missing and help fill in the gaps

• Help drive CHERI to world domination

https://github.com/riscv/riscv-cheri

	Folie 1: Let’s make a standard for CHERI-RISC-V
	Folie 2: CHERI provides deterministic memory safety
	Folie 3: CHERI concept: deterministic bounds and permissions Spatial memory safety example, temporal safety also supported
	Folie 4: CHERI exists on multiple architectures and across multiple implementations
	Folie 5: Getting to the RISC-V GitHub repo
	Folie 6: The Demo at the RISC-V Summit Santa Clara Nov ‘23
	Folie 7: CHERI-RISC-V v0.7.0
	Folie 8: RV32: Optimised Format since CHERIv9
	Folie 9: CHERIv9 Invalid address handling: the problem
	Folie 10: Illegal address handling: the solution
	Folie 11: Other changes?
	Folie 12: What extensions do we have?
	Folie 13: Getting to RVA23 Compatibility
	Folie 14: Code Size Reduction
	Folie 15: Conclusions
	Folie 16: The future….
	Folie 17: That’s all folks

